Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases

*Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz; †Instituto de Pesquisa Clinica Evandro Chagas, Fundação Oswaldo Cruz; ‡Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro; §Laboratório de Flavivirus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; ¶The Molecular Medicine Program, University of Utah; and **Department of Medicine, University of Utah, Salt Lake City, UT, USA

Summary. Background: Worldwide, dengue is the most prevalent human arbovirus disease. Dengue infection may cause a range of clinical manifestations from self-limiting febrile illness through to a life-threatening syndrome accompanied by both bleeding and shock. Thrombocytopenia is frequently observed in mild and severe disease; however, the mechanisms involved in DENV-induced platelet activation and thrombocytopenia are incompletely understood. Patients and methods: Freshly isolated platelets from patients with dengue were evaluated for markers of activation, mitochondrial alteration and activation of cell death pathways. In parallel, we examined direct DENV-induced activation and apoptosis of platelets obtained from healthy subjects. Results: We found that platelets from DENV-infected patients exhibited increased activation by comparison to control subjects. Moreover, platelets from DENV-infected patients exhibited classic signs of the intrinsic pathway of apoptosis that include increased surface phosphatidylserine exposure, mitochondrial depolarization and activation of caspase-9 and -3. Indeed, thrombocytopenia was shown to strongly associate with enhanced platelet activation and cell death in DENV-infected patients. Platelet activation, mitochondrial dysfunction and caspase-dependent phosphatidylserine exposure on platelets were also observed when platelets from healthy subjects were directly exposed to DENV in vitro. DENV-induced platelet activation was shown to occur through mechanisms largely dependent on DC-SIGN. Conclusions: Together our results demonstrate that platelets from patients with dengue present signs of activation, mitochondrial dysfunction and activation of the apoptosis caspase cascade, which may contribute to the development of thrombocytopenia in patients with dengue. Our results also suggest the involvement of DC-SIGN as a critical receptor in DENV-dependent platelet activation.

Keywords: apoptosis, DC-SIGN, dengue, mitochondrial dysfunction, platelet activation, thrombocytopenia.

Introduction

Dengue is an infectious disease caused by the dengue virus (DENV). Over 2.5 billion people live in high-risk transmission areas and dengue has emerged as a problem in the Southern United States [1]. It is estimated that over 50 million individuals are annually exposed to DENV [2]. The natural history of dengue is a self-limiting fever followed by a critical phase of defervescence, in which the patient may improve or progress to severe dengue that is associated with life-threatening increases in vascular permeability, hypovolemia, hypotension and shock [2,3]. Thrombocytopenia is commonly observed in both mild and severe dengue syndromes and correlates with the clinical outcome [2–6].
The potential mechanisms inciting DENV-associated thrombocytopenia were recently reviewed [7]. These include impaired thrombopoiesis [8] and/or peripheral platelet destruction. The latter may involve antibody-induced platelet clearance [9], enhanced interactions of platelets with leukocytes or endothelium [10,11] and activation of platelets as they contact the DENV [12,13]. Recent studies suggest that DENV is able to interact with platelets and, in turn, induce ultrastructural changes [12]. Platelets also become activated when they are exposed to DENV-infected endothelial cells [10] and increased numbers of platelet-monocyte aggregates have been observed in dengue patients [11]. These previous studies indicate that platelets can become activated during dengue infection, but the mechanisms underlying this process and its clinical consequences remain unknown.

Mitochondria are known to regulate apoptotic pathways in activated platelets [14–16]. Therefore, we examined platelet function in patients with dengue, focusing on how dengue influences mitochondrial function and apoptosis. We found that platelet activation is significantly increased in dengue-infected patients, especially in individuals with thrombocytopenia. Platelets from patients with dengue also had impaired mitochondrial function and exhibited signs of apoptosis pathway activation. Consistent with these findings, in vitro DENV infection induces similar responses of activation, mitochondrial dysfunction and apoptosis through mechanisms involving Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN). Our results suggest that DENV-induced platelet activation and apoptosis occurs though DC-SIGN-dependent mechanisms and may influence the development of thrombocytopenia in dengue.

Patients and methods

Human subjects

We prospectively followed a cohort of 39 serologically/ molecularly confirmed DENV-infected patients from the Instituto Pesquisas Clínicas Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil, whose characteristics are presented in Table 1. Peripheral vein blood samples were obtained at febrile (n = 26), defervescence (n = 26) and convalescence (n = 13) phases of infection. The mean day of sample collection after the onset of illness was 4.5 ± 1.6 in febrile, 7.5 ± 2.4 in defervescence and 25.3 ± 12.9 in convalescence. Primary and secondary infections were distinguished using the IgM/IgG antibody ratio as previously described [2,17]. For virus typing and quantification, viral RNA was extracted (QIAamp Viral RNA; Qiagen, Valencia, CA, USA) from plasma samples and processed as previously described [18,19].

Peripheral vein blood was also collected from 30 aged-matched healthy subjects and 13 patients with non-dengue febrile illness (NDFI). The disease etiologies of the NDFI patients are listed in Table S1. Written informed consent was obtained from all participants prior to any study-related procedure. The study protocol was approved by the Institutional Review Board (IPEC#016/2010).

Table 1 Characteristics of dengue-infected patients

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Control (30)</th>
<th>Dengue (39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, male</td>
<td>12 (40%)</td>
<td>22 (56.4%)</td>
</tr>
<tr>
<td>Platelet count, × 1000 mm⁻³</td>
<td>107 (49–145)</td>
<td>29 (27–35)</td>
</tr>
<tr>
<td>Hematocrit, %</td>
<td>43.5 (40.7–45.3)</td>
<td>45.3 (42.9–46.5)</td>
</tr>
<tr>
<td>Albumin, g dL⁻¹</td>
<td>3.6 (3.1–3.9)</td>
<td>2.8 (2.6–3.0)</td>
</tr>
<tr>
<td>TGO/AST, IU L⁻¹</td>
<td>66 (35–115)</td>
<td>89 (51–152)</td>
</tr>
<tr>
<td>TGP/ALT, IU L⁻¹</td>
<td>69 (46–102)</td>
<td>106 (56–152)</td>
</tr>
<tr>
<td>Haemorrhagic manifestations*</td>
<td>11 (28.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Venous hydration</td>
<td>16 (41%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Secondary infection</td>
<td>24 (61%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Mild dengue</td>
<td>20 (51.3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Mild dengue with warning signs†</td>
<td>15 (38.5%)</td>
<td>2 (5.1%)</td>
</tr>
<tr>
<td>Severe dengue‡</td>
<td>4 (10.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>PCR positive</td>
<td>29</td>
<td>27 (93%)</td>
</tr>
<tr>
<td>DENV-1</td>
<td>2 (7%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>DENV-2</td>
<td>3 (10%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Viremia, × 10⁵ copies mL⁻¹</td>
<td>1.5 ± 3.4</td>
<td>0.2 ± 0.5</td>
</tr>
</tbody>
</table>

Data are expressed as median (interquartile range) or number (%).

*Gingival bleed, vaginal bleed, gastrointestinal bleed, petechiae and exanthema.
†Abdominal pain or tenderness, persistent vomiting, clinical fluid accumulation, mucosal bleed, and/or increased hematocrit concurrent with rapid decrease in platelet count. According to WHO guidelines [2].
‡Severe plasma leakage, fluid accumulation, ascites and/or massive bleeding. According to WHO guidelines [2].

Platelet isolation

Platelets were isolated as previously described [20] and resuspended in medium 199 at 37 °C. The purity of the platelet preparations (> 99% of CD41⁺ events) was confirmed by flow cytometry.

Flow cytometric analysis

Platelets were resuspended in modified Tyrod’s (137 mm NaCl, 2.68 mm KCl, 5 mm HEPES, 1 mm MgCl₂, 11.9 mm NaHCO₃, 0.42 mm NaH₂PO₄, 4.7 mm glucose; pH 7.4). P-selectin (CD62-P) surface expression was determined using PE- or FITC-conjugated anti-human CD62P (BD Pharmingen, San Jose, CA, USA) (0.25 μg mL⁻¹, 30 min); DC-SIGN surface expression was determined by incubating platelets with biotin-conjugated antibody against DC-SIGN (eBioscience, San Diego, CA, USA; eB-h209) (1.5 μg mL⁻¹, 20 min) and PE/C5-conjugated streptavidin (0.2 μg mL⁻¹, 20 min); mitochondrial membrane potential (ΔΨₘ) was measured using the probe, tetramethylrhodamine ethyl ester (TMRE, Fluka Analytical, San Diego, CA, USA; 100 nm, 10 min), mitochondrial-derived reactive oxygen species (ROSₘ) were detected...
using MitoSoxRed (Invitrogen, Carlsbad, CA, USA) (2.5 μM, 10 min); active caspase-9 was determined using green FAM-LEDH-FMK, FLICA (Immunochemistry Technologies, Bloomington, MN, USA); and phosphatidylserine exposure was stained with FITC-conjugated Annexin V (BD Pharmingen). A minimum of 10 000 gated events were acquired using a FACScalibur flow cytometer (BD Bioscience, San Diego, CA, USA).

Assessment of mitochondrial function

TMRE and MitoSoxRed were used to measure ΔΨm and ROSm, respectively. To control the mitochondrial specificity of the probes, platelets were treated with the proton ionophore FCCP (0.5 μM) 15 min before labeling. To assess mitochondrial permeability, platelets were treated with the F1F0-ATP-synthase inhibitor Oligomycin (1 μg mL⁻¹) 15 min before ΔΨm labeling. Mitochondrial content was determined measuring citrate-synthase activity in platelet protein extracts (10 μg) by 412 nm spectrophotometric detection of CoA-TNB2, which formed with citrate as DTNB, acetyl-CoA and oxaloacetate interacted with one another.

Western blotting

Western blotting was performed as previously described [21]. The primary antibodies used were mouse anti-human caspase-9 and rabbit anti-human caspase-3 (Cell Signaling Technology, Danvers, MA, USA).

Virus preparation

DENV serotype 2 strain 16881 was propagated in C6/36 Aedes albopictus mosquito cells and titrated by plaque assay on BHK cells [22]. The amount of infectious particles was expressed as plaque forming units (PFU) per mL. Supernatants from uninfected cell cultures (mock) were produced using the same conditions.

In vitro platelet stimulation

Platelets from healthy volunteers were incubated with thrombin (T1063; Sigma, St. Louis, MO, USA) (0.1 U mL⁻¹) or with DENV-2 (1 PFU per platelet) at 37 °C for the indicated times. In selected experiments platelets were pre-incubated for 30 min with neutralizing antibodies against DC-SIGN (120507; R&D Systems, Minneapolis, MN, USA) (25 μg mL⁻¹), the integrin αv subunit, or an isotype-matched antibody; or with the pan-caspase inhibitor ZVAD-fmk (BioVision, Milpitas, CA, USA) (20 μg mL⁻¹).

Statistical analysis

Statistics were performed using GraphPad Prism 5.0 software (GraphPad Software, San Diego, CA, USA). One-way analysis of variance (ANOVA) was used to determine differences. Bonferroni’s post-hoc test was employed to identify the location of each difference between groups. The paired two-tail t-test was used to compare stimulated and unstimulated platelets from the same donor. Correlations were assessed using Pearson’s test.

Results

Platelet activation in patients with dengue

The intensity of surface P-selectin expression (mean fluorescence intensity, MFI) on platelets was significantly (P < 0.05) higher in samples from patients with dengue during the febrile (51.5 ± 24.3 MFI) (41.0 ± 22.0 MFI) phases compared with the convalescence (22.9 ± 6.3 MFI) phase or healthy volunteers (16.9 ± 4.3 MFI). P-selectin expression was also higher on platelets isolated from febrile and defervescence DENV-infected patients compared with

© 2013 International Society on Thrombosis and Haemostasis
NDFI (33.8 ± 8.7 MFI) even although surface P-selectin expression was greater in NDFI compared with healthy subjects (Fig. 1A).

Phosphatidylserine exposure on platelets (percentage of positive platelets) was similarly increased ($P < 0.01$) in patients in febrile (34.4 ± 10.4%) and defervescence (31.6 ± 10.7%) dengue phases vs. patients in the convalescence phase (14.1 ± 7.3%), healthy volunteers (9.1 ± 4.2%), or NDFI (14.3 ± 7.6%) (Fig. 1B).

Platelet activation is associated with thrombocytopenia during dengue disease

Using platelet counts determined on the day of sample collection, patients were classified as thrombocytopenic (TCP) (<150 000 mm$^{-3}$) or non-thrombocytopenic (NTCP). Based on this grouping, 14 patients in the febrile phase were TCP whereas 12 were NTCP. The breakdown was similar in dengue patients in the defervescence phase (14 TCP and 10 NTCP patients). P-selectin surface expression was higher in TCP dengue patients (61.5 ± 27.5 MFI for febrile and 49.3 ± 25.2 MFI for defervescence) vs. NTCP (39.8 ± 13.0 for febrile and 29.8 ± 6.6 MFI for defervescence) (Fig. 2A).

Moreover, we found that platelet counts in DENV-infected patients inversely correlated with surface P-selectin expression and phosphatidylserine exposure (Fig. 2B, C). This relationship between thrombocytopenia and platelet activation was similarly observed during the course of the disease (Fig. 2D).

Mitochondrial dysfunction in platelets from patients with dengue

Mitochondria are important regulators of the intrinsic pathways of apoptosis [23]. They also regulate activation responses and procoagulant activity in platelets [24], and loss of $\Delta \Psi_m$ occurs in platelets that become apoptotic after activation [14,15] or aging during storage [16,25]. As shown in Fig. 3A, the proton ionophore FCCP significantly reduced $\Delta \Psi_m$ in platelets isolated from healthy subjects or DENV-infected patients. However, basal $\Delta \Psi_m$ was significantly ($P < 0.01$) reduced in platelets isolated from dengue-infected patients in febrile (14.6 ± 3.5 MFI) and defervescence (14.6 ± 4.1 MFI) compared with dengue patients in the convalescence (21.8 ± 3.6 MFI), NDFI (20.5 ± 4.6 MFI), or healthy volunteers (23.2 ± 4.6 MFI) (Fig. 3B). As expected, $\Delta \Psi_m$ was significantly increased when platelets from healthy subjects were incubated with oligomycin, which inhibits mitochondrial H$^+$-ATP synthase. This increase, however, was not observed when platelets from dengue patients were exposed to oligomycin (Fig. 3C).

Next, we assessed citrate-synthase activity in platelets and found no differences between dengue patients and controls (Fig. 3D). These results indicate that perturbations in $\Delta \Psi_m$ are result of increased mitochondrial permeability and not a reduction in mitochondrial content.

As shown in Fig. 3E,F, platelets from DENV-infected patients constitutively generate ROS$_m$. Treatment of the platelets with FCCP confirmed that ROS were derived from mitochondria (Fig. 3E). Basal production of ROS$_m$ was significantly ($P < 0.05$) higher in platelets from dengue patients at both febrile (14.2 ± 3.8 MFI) and defervescence (11.8 ± 2.7 MFI) phases compared with dengue patients at the convalescence (8.4 ± 0.9 MFI), NDFI (9.7 ± 2.2 MFI) and healthy subjects (8.4 ± 1.3 MFI) (Fig. 3F).

Platelet apoptosis in patients with dengue

Increased phosphatidylserine exposure and mitochondrial depolarization suggest that apoptotic pathways are more active in platelets from DENV-infected patients. Consistent with this possibility, we found that phosphatidylserine exposure negatively correlated with $\Delta \Psi_m$ in platelets from dengue patients (Fig. 4A). To assess activation of apoptosis pathways in more depth, we measured activation of caspase-9 and -3 in platelets during dengue illness. Caspase-9 activation was significantly ($P < 0.01$) higher in platelets isolated from febrile (15.3 ± 3.2 MFI) and defervescence dengue patients compared with healthy subjects (8.5 ± 1.7 MFI), dengue patients in convalescence (8.8 ± 2.5 MFI) and NDFI (11.3 ± 2.3 MFI) (Fig. 4B). Higher amounts of cleaved caspase-9 and -3 were also observed by Western blot in DENV-infected patients compared with healthy volunteers (Fig. 4C).

DENV-2 induces activation, mitochondrial dysfunction and apoptosis in platelets

Next, we determined whether DENV-2 directly activates platelets yielding similar responses to those of platelets from dengue-infected patients. Platelets from healthy donors were incubated with DENV-2 or mock for 1, 30 min, 1.5, 3 and 6 h. Incubation of platelets with DENV-2 significantly increased surface P-selectin expression at 6 h compared with mock (55.2 ± 5.7 vs. 30.7 ± 12.4 MFI; $n = 4$, $P = 0.019$). The kinetics of P-selectin presentation on the surface of platelets exposed to DENV-2 was distinct from that of thrombin stimulation, suggesting that DENV activates platelets through different mechanisms (Fig. 5A).

Six hours exposure to purified DENV-2 similarly activated platelets (Fig. 5B). Virus purification was obtained using a Centricon YM-100 Centrifugal Filter (Merck Millipore, Billerica, MA, USA) and platelets from healthy subjects were exposed separately to the filtrate or to the retentate (purified virus) resuspended in medium. Exposure of platelets to purified DENV-2 significantly increased surface P-selectin expression compared with the virus filtrate or to mock sample processed in parallel (purified DENV-2, 49.6 ± 12.5 MFI vs. 23.6 ± 14.5 MFI).
or 32.6 ± 13.7 MFI for virus filtrate and mock retentate, respectively;

Phosphatidylserine exposure on platelets was also increased after 6 h of incubation with DENV-2 (68.7 ± 11.5% vs. 19.2 ± 11.8% of positive platelets;

Fig. 2. Platelet counts in patients with dengue correlate with indices of platelet activation. (A) The mean fluorescence intensity (MFI) of P-selectin expression in thrombocytopenic (TCP) and non-thrombocytopenic (NTCP) dengue patients. Boxes indicate the median and interquartile ranges and whiskers indicate 5–95 percentile. (B–C) Platelet counts were plotted against the MFI of P-selectin expression (B) and the percentage of annexin V-binding platelets (C) in febrile (Feb) defervescence (Def) and convalescence (Conv) phases. In Panels B and C the analysis was restricted to platelet counts obtained on the same day that P-selectin and phosphatidylserine were analysed. (D) Platelet counts and the MFI of P-selectin expression were plotted against the day of illness in which each value was obtained. Non-linear regressions were traced according to the distribution of dots. *P < 0.05 vs. control; #P < 0.01 TCP vs. NTCP.

© 2013 International Society on Thrombosis and Haemostasis

fmk. Blocking caspase activity did not affect P-selectin expression (Fig. 5D), but significantly (P < 0.05) impaired phosphatidylserine exposure on platelets (Fig. 5E). These data demonstrate that most of phosphatidylserine exposure depends on apoptosis pathways and only a small proportion depends on platelet activation.

In addition to infective DENV-2, we also exposed platelets to heat-inactivated virus (56 °C, 1 h). Heat inactivation prevented DENV-2 from increasing P-selectin
and phosphatidylserine on the surface of platelets (Fig. 5D,E). DENV-2 also significantly impaired mitochondrial function in platelets as evidenced by a reduction in TMRE fluorescence (infectious DENV-2, 18.2 ± 7.4 MFI vs. 31.6 ± 18.3 MFI or 31.3 ± 12.3 MFI for heat-inactivated and mock, respectively; n = 6, P < 0.01) and increased MitoSOX Red fluorescence (infectious DENV-2, 38.3 ± 13.8 MFI vs. 23.5 ± 7.7 MFI or 24.6 ± 6.4 MFI for heat-inactivated-DENV-2 and mock, respectively; n = 6, P < 0.01) (Fig. 6A,B). Activated caspase-9 was also significantly higher in platelets exposed to DENV-2 (infectious DENV-2, 50.4 ± 11.5 MFI vs. 28.6 ± 12.3 MFI or 29.0 ± 5.6 MFI for heat-inactivated DENV-2 and mock, respectively; n = 4, P < 0.01) (Fig. 6C). Furthermore, a negative correlation was observed between ΔΨm and phosphatidylserine exposure (Fig. 6D). We observed that platelets with high phosphatidylserine exposure concomitantly exhibited reduced TMRE fluorescence (Fig. 6D insets).

DENV-2 activates platelets through pathways that involve DC-SIGN

Previous studies in other cell types have shown that DENV particles interact with surface molecules that include DC-
Fig. 4. Platelets apoptosis in patients with dengue. (A) The mean fluorescence intensity (MFI) for tetramethylrhodamine ethyl ester (TMRE) was plotted against the percentage of annexin V-binding platelets in febrile (Feb), defervescence (Def) and convalescence (Conv) dengue phases. (B) The MFI of caspase-9 activation in platelets freshly isolated from healthy subjects (control), patients with non-dengue febrile illness (NDFI) and dengue-infected patients in Feb, Def, and Conv. Boxes indicate median and interquartile ranges and whiskers indicate 5-95 percentile. (C) Western analysis of pro- and cleaved caspase-9 (casp-9) and caspase-3 (casp-3), and β-actin in platelets isolated from control or dengue patients (representative of 5). *P < 0.01 vs. control; #P < 0.05 vs. NDFI.

Fig. 5. DENV-2 induces platelet activation. The mean fluorescence intensity (MFI) of P-selectin expression (A, B and D) and the percentage (%) of annexin V-binding platelets (C and E) in platelets exposed to DENV in vitro. (A and C) Platelets were exposed to mock or DENV-2 for 1, 30 min, 1.5, 3 or 6 h; or activated with thrombin for 1, 5, 15, 30 min or 1 h. (B) Platelets were exposed (6 h) to the filtrate or the retentate of DENV-2 purified through centrifugation in a Centricon Filter, or mock processed in parallel. (D and E) Platelets were exposed (6 h) to mock, DENV or heat-inactivated DENV in the presence of the pan caspase inhibitor ZVAD-fmk. Dots and bars represent mean ± standard error of the mean (SEM) of four independent experiments from individual donors. *P < 0.05 vs. mock; #P < 0.05 vs. DENV filtrate or ZVAD-fmk treated platelets.
SIGN and integrin αvβ3 [26,27]. Although these receptors have been reported in platelets [28,29], they have not been linked to DENV-induced platelet activation. To investigate their roles in platelet activation, platelets were incubated with neutralizing antibodies against DC-SIGN or αv integrin subunit prior to exposure to DENV-2. Blocking of DC-SIGN, but not αv, prevented DENV-2 from increasing P-selectin expression on the surface of platelets (Fig. 7A). Decreased ΔΨm elicited by DENV-2 was similarly rescued by anti-DC-SIGN antibodies (Fig. 7B).

To clarify the role played by DC-SIGN-expressing platelets in DENV-induced platelet activation, we analyzed surface P-selectin expression in DC-SIGN-stained platelets gated as DC-SIGN positive or negative. DC-SIGN positive platelets ranged from 13.4% to 37.5% (21.4 ± 8.5%) (Fig. 7C). DENV exposure did not affect DC-SIGN expression on platelets (Fig. 7D). As shown in Fig. 7E, DC-SIGN positive platelets exhibited increased P-selectin expression compared with DC-SIGN negative (51.8 ± 14.6 MFI for DC-SIGN+ vs. 31.4 ± 3.2 MFI for DC-SIGN−; n = 4, P = 0.0398).

Discussion

Thrombocytopenia is a common manifestation of dengue infection. Increased platelet clearance may occur in dengue infection as consequence of platelet activation. However, the mechanisms underlying this remain elusive. Here, we show that platelets from dengue patients display classic signs of apoptosis that include increased phosphatidyserine exposure, mitochondrial depolarization and activation of caspase-9 and -3. Moreover, thrombocytopenia in patients with dengue strongly correlates with enhanced platelet activation and apoptosis. Our data also implicate DC-SIGN as a critical receptor in DENV-dependent platelet activation.

Abnormal platelet function has been reported in dengue [30], but the underlying mechanisms are not fully understood. We consistently observed that platelets from DENV-infected patients were more activated compared with healthy subjects. Moreover, platelet activation was more pronounced in thrombocytopenic patients. This suggests that dengue may activate platelets and, as a result, facilitate platelet deposition in micro-vessels and/or clearance. Consistent with this hypothesis, increased phagocytosis of platelets by macrophages in patients with dengue was recently reported [6]. Sequestration of platelets in the liver and spleen of dengue-infected patients have also been observed [31].

Many factors influence platelet survival, which is reduced in patients with dengue [31]. One of these involves the intrinsic pathway of apoptosis [16].
Fig. 7. DENV-2 activates platelets through mechanisms that involve DC-SIGN. Platelets were exposed for 6 h to mock, DENV-2 or heat-inactivated DENV-2 in the presence or absence of neutralizing antibodies against DC-SIGN or the αV integrin subunit. The percentage increase in P-selectin expression (A) or percentage decrease in tetramethylrhodamine ethyl ester (TMRE) fluorescence (B) related to mock values are shown. (C) Representative density plots showing the expression of DC-SIGN on platelets. (D) The percentage of DC-SIGN-expressing platelets exposed to mock or DENV. (E) Platelets exposed to mock or DENV-2 were stained for P-selectin and DC-SIGN. The mean fluorescence intensity (MFI) for P-selectin expression was assessed on platelets gated as DC-SIGN negative (DC-SIGN−) or positive (DC-SIGN+). Representative histograms and density plots are shown next to their corresponding graphs. Bars represent the mean ± standard error of the mean (SEM) of four independent experiments from individual donors. *P < 0.05 vs. mock; #P < 0.05 between anti-DC-SIGN or IgG isotype (A and B); or between DC-SIGN− and DC-SIGN+ (E).
The mechanisms by which dengue induces platelet activation are not known. Here we show that DC-SIGN supports DENV-induced P-selectin surface expression and mitochondrial dysfunction in platelets. Boukour et al. [28] previously demonstrated that platelets express DC-SIGN, a C-type lectin receptor that has demonstrated roles in DENV recognition in dendritic cells [26]. Blockade of DC-SIGN on the surface of platelets prevents DENV-2 from activating platelets and impairing ΔΨm. Whether this is as a result of outside-in activation of DC-SIGN signaling pathways and/or internalization of DENV-2 into platelets requires further investigation. Regarding the latter, DC-SIGN facilitates entry of HIV into platelets [28] and DENV has been detected in platelets [13,37]. If DENV entry is necessary to induce platelet activation and apoptosis, other receptors such as FCγRIIa may be also involved, as it can mediate DENV entry in macrophages [38] and has demonstrated roles in Staphylococcus aureus-induced platelet activation [39].

In summary, we show that platelets from dengue-infected patients have impaired mitochondrial function and evidence of apoptosis, which probably contributes to the development of thrombocytopenia in dengue disease. As DENV can trigger mitochondrial dysfunction and platelet activation through mechanisms that involve DC-SIGN, therapeutic strategies that prevent DENV from interacting with DC-SIGN on platelets may have a role in the treatment of dengue-associated thrombocytopenia.

Addendum

E.D. Hotz, performed the majority of experiments, data analyzes and manuscript drafting and preparation; P.C.G. Nunes, performed virological and immunological analyzes from patient plasma; R.M.R. Nogueira, experimental design and manuscript editing/review; M.F. Oliveira, experimental design and manuscript editing/review; R. Valls-de-Souza, patient enrolment and experimental analyzes; A.T. Da Poian, experimental design and manuscript editing/review; A.S. Weyrich, experimental design and manuscript editing/review; G.A. Zimmerman, experimental design and manuscript editing/review; P.T. Bozza and F.A. Bozza, directed all aspects of the study, data analyzes, and manuscript preparation and review.

Acknowledgements

We thank Gisele B. Lima for virus production, and Alan B. Carneiro, Luiz Felipe G. Souza, Edson F. Assis and Monique R. Q. Lima for technical assistance.

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),
Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), PAPES/FIOCRUZ, INEBEB and PRO-NEX Dengue; and from the National Institutes of Health (HL066277, HL091754, and HL044525 awarded to A.S.W. and G.A.Z).

Disclosure of Conflict of Interests

The authors declare no competing financial interests.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Characteristics of patients with non-dengue febrile illness (NDFI).

Table S2. Platelet activation, mitochondrial dysfunction, and apoptosis in platelets from patients with primary and secondary dengue infection.

References

4 Mourao MP, Lacerda MV, Macedo VO, Santos JB. Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon. Platelets 2007; 18: 605–12.

17 Falconar AK, De Plata E, Romero-Vivas CM. Altered enzyme-linked immunosorbent assay immunoglobulin M (IgM)/IgG optical density ratios can correctly classify all primary or secondary dengue virus infections 1 day after the onset of symptoms, when all of the viruses can be isolated. Clin Vaccine Immunol 2006; 13: 1044–51.

© 2013 International Society on Thrombosis and Haemostasis

