Identification of Primary Drug Resistance to Rifampin in *Mycobacterium leprae* Strains from Leprosy Patients in Amazonas State, Brazil

Matilde del Carmen Contreras Mejía,¹ Maisa Porto Dos Santos,²,a,b George Allan Villarouco da Silva,²,a,b Isabella da Motta Passos,²,a,f Felipe Gomes Naveca,² Maria da Graça Souza Cunha,³ Milton Ozório Moraes,⁴ and Lucia de Paula²,a

Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Amazonas, Brazil;² Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane, Manaus, Amazonas, Brazil;³ Fundação Alfredo da Matta, Manaus, Amazonas, Brazil;⁴ Laboratório de Micobacteriologia do Instituto Nacional de Pesquisa da Amazônia-INPA, Manaus, Amazonas, Brazil;¹ Universidade Estadual do Amazonas, Manaus, Amazonas, Brazil;² Departamento de Ciências Biológicas, Regional Catalão, Universidade Federal de Goiás, Catalão, Goiás, Brazil

The aim of this study was to identify polymorphisms in the *folP1*, *gyrA*, and *rpoB* genes in leprosy patients treated in Amazonas State, Brazil. Among 197 slit-skin smear samples from untreated or relapsed patients, we found three cases of primary resistance to rifampin and one confirmed case of multidrug resistance.

Efforts to reduce leprosy led the World Health Organization (WHO) in 1982 to initiate a program introducing multidrug therapy (MDT); a combination of rifampin, clofazimine, and dapsone successfully reduced the number of patients under treatment (1). However, the introduction of MDT did not alter the number of new cases. Yearly, 35,000 leprosy patients have been diagnosed in Brazil in the past decade (2), and drug resistance to MDT components has been observed (3, 4).

Mycobacterium leprae, the causative agent of leprosy, is an obligate intracellular slow-growing bacterium, which has a highly conserved genome (5). Here, we used DNA sequencing in *folP1*, *rpoB* (encoding targets of the first-line drugs dapsone and rifampin, respectively), and *gyrA* (encoding targets of second-line drugs) to assess drug resistance in slit-skin smear samples obtained from leprosy patients treated at the Alfredo da Matta Tropical Dermatology Foundation (FUAM), Manaus, Amazonas, Brazil, from May 2009 to January 2011. The study was approved by the ethics committee of research of this institution (no. 05/2009). Written consent was obtained from each subject before admission in the study.

The samples were collected as done in the routine procedure for the determination of the bacterial index (BI) and transferred into 70% ethanol Eppendorf tubes or FTA elute cards (Whatman, Inc., Florham Park, NJ, USA). The BI of the slit-skin specimens varied between zero (0) and 6+. For DNA extraction, we used either the Qiagen DNeasy blood and tissue kit (Life Technologies, Brazil) for the samples stored in ethanol or the manufacturer’s instructions for FTA cards.

Fragments of the three genes were separately amplified using previously described PCR conditions and primers (4). The amplified DNA fragments were confirmed using gel electrophoresis in 2.0% Metaphor agarose (Ludwig Biotec) diluted in Tris-borate-EDTA (TBE) buffer. The PCR products were then purified using the PCR cleanup system kit (Promega). For sequencing, the same primers used to generate the PCR fragment of each gene (4) were used with the ABI BigDye 3.1 Terminator ready reaction kit (Applied Biosystems do Brasil). The target regions of the *folP1* (GenBank accession no. AL583917, gene ML583917), *rpoB* (GenBank accession no. AL583923, gene ML1891), and *gyrA* (GenBank accession no. AL583917, gene ML0006) genes were used as standard wild-type strains, and the reported mutations were labeled in these fragments.

From 197 samples, there were 56 lepromatous leprosy (LL), 54 borderline lepromatous, 27 borderline borderline, 51 borderline tuberculoid, 6 tuberculoid, and 3 indeterminate cases, according to the criteria of Ridley and Jopling (6). All patients were treated according to WHO recommendations for paucibacillary and multibacillary leprosy. Among those, there were new (n = 126) and relapse cases (n = 39), reentry cases (n = 3), and patients with leprosy reactions (n = 29). There were 153 males and 44 females. A total of 76, 102, and 79 samples were PCR positive for *rpoB*, *folP1*, and *gyrA*, respectively.

Among the samples screened, we found a total of 4 of 76 PCR-positive (5.2%) specimens carrying previously described *rpoB* polymorphisms. One of the four cases was a multidrug-resistant strain in a relapse case, where polymorphisms at *folP1* and *gyrA* were also detected.

Analyzing the *rpoB* region, three samples showed a GAT→TAT (Asn→Tyr) single nucleotide polymorphism (SNP) at codon 410, which was previously reported in leprosy (7, 8). All of these new cases clearly demonstrating primary drug resistance to rifampin in Amazonas State. Two of these patients were male and one was female, and all of them had a BI of 4+ with LL as the clinical form. The relapse case showed at codon 425 a TCG→TTC (Ser→Phe) polymorphism in *rpoB*, commonly associated with drug resistance in leprosy (3, 7, 9) and also presented a SNP at codon 91 in the *gyrA* gene altering GCA to GTA (Ala→Val). Another polymorphism in the *folP1* gene was detected at codon 55 (CCC→CGC), changing proline to leucine, which is commonly associated with dapsone resistance (7, 10–13), demonstrating multidrug resistance (MDR) (12). This was a male...
patient who lived in a leprosarium and received dapsone mono-
therapy treatment for >10 years, later received 24 doses of MDT, and
finally received another 24 doses of MDT together with ofloxacin
after MDR detection.

We also detected single nucleotide variations in *rpoB*, *folp1*,
and *gyrA* in the vicinities of known mutations, but those have
never been described with resistance in leprosy. It is likely that
these SNPs are not associated with drug resistance, but they might
be used for molecular epidemiology and strain identification.
In three new cases, we detected polymorphisms in the *folp1* gene at
codons 50 (GCC→GGT [Gly]), 44 (GCG→GTC [Ala→Val]), and 64 (GTT→GTC [Val]). Also, a new case showed one polymorphism
at codon 89 in the *gyrA* gene of CCG→CTG (Pro→Leu). None of
these SNPs are known to be related to drug resistance, neither in *M.
leprae* nor *Mycobacterium tuberculosis* complex.

Among the 39 relapse cases, we detected polymorphisms in the
rpoB gene at codons 437 (GCC→GAC [Asp→Asx]) and 444
(GTG→GCG [Val→Asl]). The second sample showed two differ-
ent populations, one with the amino acid alanine and the other one
with a valine in the *rpoB* gene, suggesting a double infection.
This sample was obtained from a potential relapse case, and this
SNP might be used to distinguish strains in order to define rein-
fection. A common SNP that was not associated with resistance
was identified in the *gyrA* gene, and it was a synonymous SNP at
position 99 (CGG→CGT [Arg]) found in four new cases (5% of
the total polymorphisms). Curiously, all of these cases were from
multibacillary patients (LL, 3; BL, 1) with high bacillary loads
(BI ≥ 3).

The detection of drug-resistant *M. leprae* strains has been
reported in Brazil (14–16). Nevertheless, circulating genotypes
and resistant strains are not routinely surveyed worldwide (17).
Here, we confirm the occurrence of multidrug-resistant and also
primary-resistant cases in this geographical area. It is likely that
the resistant strains are actively circulating in the north of Brazil,
suggesting an urgent need for a drug resistance monitoring policy
and a careful posttreatment follow-up of cured patients in order
to detect relapse earlier and rapidly identify resistant strains.

ACKNOWLEDGMENTS

We thank the staff at the Alfredo da Matta Foundation, Manaus, Amazo-
nas, Brazil, the Federal University of Amazonas, Brazil, and the Program
for Technological Development in Tools for Health (PTDTS) FIOCRUZ
for use of its facilities (ILMD sequencing platform).

This study was funded by the National Council for Scientific and
Technological Development (CNPq), Brazil, the Coordination of Im-
provement of Higher Education Personnel (CAPES), Brazil, and the Ama-
zonas State Funding Agency (FAPEAM).

We declare no conflicts of interest.

REFERENCES

 series 675. World Health Organization, Geneva, Switzerland.

 Epidemiologic profile of the leprosy of the city of Teresina, in the period
 S0365-05962010000200005.

4. Kai M, Nguyen Phuc NH, Nguyen HA, Pham TH, Nguyen KH, Miya-
moto Y, Maeda Y, Fukutomi Y, Nakata N, Matsuoka M, Makino M, Nguyen TT.
 2011. Analysis of drug-resistant strains of *Mycobacterium leprae*
 http://dx.doi.org/10.1093/cid/ciq217.

 A; Matsuoka M, Taylor GM, Donoghue HD, Bouwman A, Mays S, Watson C,
 Lockwood D, Khamesipour A, Dowlati Y, Jianping S, Rea TH, Vera-Cabrera L,
 Stefanii MM, Banu S, Macdonald M, Sapkota BR, Spencer JS, Thomas J, Harshman K,
 1289. http://dx.doi.org/10.1038/ng.477.

6. Ridley DS, Jolping WH. 1962. A classification of leprosy for research

7. Maeda S, Matsuoka M, Nakata N, Kai M, Maeda Y, Hashimoto K,
 drug resistant *Mycobacterium leprae* from patients with leprosy. Antimi-

detection of mutations conferring drug resistance in *Mycobacterium
 leprae*, based on a DNA microarray, and its applicability in develop-
 10.1099/jmm.0.002600-0.

 Molecular detection of rifampin and ofloxacin resistance for patients who
 http://dx.doi.org/10.1086/324632.

10. Williams DL, Waguspack C, Eisenach K, Crawford JT, Portaels F,
 Salfinger M, Nolan CM, Abe C, Sticht-Groh V, Gillis TP. 1994. Char-
 acterization of rifampin-resistance in pathogenic mycobacteria. Antimi-
 38.10.2380.

 Hashimoto K, Kobayashi K, Kashiwabara Y. 1999. Diaminophenyl-
 sulphone resistance of *Mycobacterium leprae* due to mutations in the dihy-

 YH, Kim NH. 2001. The prevalence of *folP1* mutations associated with
 clinical resistance to dapsone, in *Mycobacterium leprae* isolates from South
 34981300188447.

 leprae* isolate resistant to dapsone, rifampin, ofloxacin and sparfloxacin.

14. Talhari S, Damaso MHDS, Cunha MDGS, Schettini AP, de Andrade
 LMC. 1985. Sulfonato-resistência secundária: comprovação laboratorial em
 seis casos/Secondary dapsone-resistance: laboratory confirmation in 6

15. da Silva Rocha A, Cunha Md, Diniz LM, Salgado C, Aires MA, Nery JA,
 Gallo EN, Miranda A, Magnanini MM, Matsuoka M, Samo EN, Suffys
 PN, de Oliveira ML. 2012. Drug and multidrug resistance among *Mycobacte-
 rium leprae* isolates from Brazilian relapsed leprosy patients. J. Clin.

16. Fontes AN, Gomes HM, Araujo MI, Albuquerque EC, Baptista IM, Moura
 MM, Rezende DS, Pessolani MC, Lara FA, Pontes MA, Gonçalves Hde S,
 Lucena-Silva N, Sanno EN, Vissa VD, Brennan PJ, Suffys PN. 2012. Genotyp-
 ing of *Mycobacterium leprae* present on Ziehl-Neelsen-stained microscopic
 slides and in skin biopsy samples from leprosy patients in different geo-

17. Williams DL, Gillis TP. 2012. Drug-resistant leprosy: monitoring and