Standard Conditions of Virus Isolation Reveal Biological Variability of HIV Type 1 in Different Regions of the World

H. RÜBSAMEN-WAIGMANN,¹ H. VON BRIESSEN,¹ H. HOLMES,² Å. BJÖRNDAL,³ B. KORBER,⁴ R. ESSE,¹ S. RANBAR,² P. TOMLINSON,² B. GALVAO-CASTRO,² E. KARITA,⁵ S. SEMPALA,⁷ C. WASI,⁵ S. OSMANOV,⁹ E.-M. FENYÖ,⁹ and the WHO NETWORK FOR HIV ISOLATION AND CHARACTERIZATION¹⁰

ABSTRACT

HIV-1 isolates were obtained from four countries within the framework of the WHO Network for HIV Isolation and Characterization. The use of standard HIV isolation procedures allowed us to compare the biological properties of 126 HIV-1 isolates spanning five genetic subtypes. In primary isolation cultures, viruses from Uganda and Brazil appeared early and replicated without delay, whereas the replication of Thai viruses was delayed by several weeks. Regardless of genetic subtype or country of origin, blood samples collected more than 2 years after seroconversion yielded virus that replicated efficiently in the primary isolation cultures. None of the isolates obtained from Thailand or Rwanda replicated in cell lines, whereas 5 of the 13 Brazilian isolates and 7 of the 11 Ugandan isolates replicated and induced syncytia in MT-2 cells. As expected for virus isolates obtained early in HIV-1 infection (within 2 years of seroconversion), all viruses from Brazil, Rwanda, and Thailand showed a slow/low replicative pattern. For the Ugandan samples, the time from seroconversion was known precisely for a few of the samples and only in one case was less than 2 years. This may explain why the five viruses that were able to replicate in all cell lines, and thus classified as rapid/high, were of Ugandan origin. Viruses able to induce syncytia in MT-2 cells, also induced syncytia in PBMC. However, 8 slow/low viruses (out of 27) gave discordant results, inducing syncytia in PBMC but not in MT-2 cells. Furthermore, using syncytium induction as a marker, changes in virus populations during early *in vitro* passage in PBMC could be observed. The results indicate that biological variation is a general property of HIV-1 in different regions of the world. Moreover, the time from HIV-1 infection, rather than genetic subtype, seems to be linked to viral phenotype.

¹Georg-Speyer-Haus Chemotherapeutisches Forschungsinstitut, Frankfurt, Germany; ²National Institute of Biological Standards and Control, London, U.K.; ³Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden; ⁴HIV Sequence Database, Los Alamos National Laboratory, Los Alamos, New Mexico 87545; ⁵FIOCRUZ, Brotas, Salvador, Bahia, Brazil; ⁶Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium; ⁷Uganda Virus Research Institute, Entebbe, Uganda; ⁸Department of Microbiology, Division of Virology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; ⁹Global Programme on AIDS, World Health Organization, Geneva, Switzerland.

INTRODUCTION

HUMAN IMMUNODEFICIENCY VIRUS (HIV) isolates have been shown to differ in their replicative and cytopathic characteristics. With genetic subtype B viruses from Europe and North America, the characteristics of isolated viruses have been shown to vary in relation to the severity of HIV infection. Notably, individuals with asymptomatic HIV infection yielded, as a rule, virus that replicated slowly and to low titers in peripheral blood mononuclear cell (PBMC) cultures, did not replicate in cell lines and lacked syncytia-inducing capacity. In contrast, patients with immunodeficiency yielded virus able to efficiently replicate not only in PBMC but also in cell lines, and which induced large syncytia. Accordingly, HIV isolates have been classified as slow/low or non-syncytia-inducing and rapid/high or syncytia-inducing. Slow/low viruses could be further subdivided according to infectivity titers in PBMC, numbers of viral RNA molecules in infected cells, replication in monocyte/macrophage cultures, and their ability to transiently replicate in cell lines. When patients with progressive HIV-1 infection were followed over time, a gradual increase in the replicative capacity of isolated viruses could be demonstrated in vitro. This led to the suggestion that the increased capacity to replicate in vitro signals the appearance of a more virulent virus. Indeed, in some cases, the emergence of virus able to replicate in cell lines and with syncytia-inducing capacity immediately precedes a sharp decline in CD4 counts. However, this is not always the case and CD4 counts may decrease and the patient may develop AIDS without the emergence of such viruses.

The present study, performed within the framework of the WHO Network for HIV Isolation and Characterization, provided the opportunity to address the question of whether HIV-1 isolates of genetic subtypes other than B differ in biological properties. HIV-1 isolates were carefully observed for changes in biological properties in primary culture and during subsequent passage in PBMC. Also, this collaborative study made it possible to systematically compare different classification systems for HIV-1 biological phenotyping and to relate phenotypic differences to V3 loop sequence.

MATERIALS AND METHODS

HIV-1 isolation

Blood was collected from HIV-1-infected asymptomatic individuals in Brazil, Rwanda, Thailand, and Uganda as described and shipped to the centralized HIV isolation laboratories, at the Georg-Speyer-House (GSH) in Frankfurt and at the National Institute for Biological Standards and Control (NIBSC) in London. All shipments were received within the time indicated in Table 1. Blood was drawn in identical syringes (Sarstedt). For virus isolation, a standardized protocol based on the coculturing of patient's peripheral blood mononuclear cells (PBMC) with donor PBMC was used. Donor PBMC were derived by separation of buffy coats on Ficoll gradient (NIBSC: Pharmacia, GSH: Biochrom) and stimulated for 3 days with 5–10 μg/ml phytohemagglutinin (PHA-P, Sigma) in RPMI 1640 medium containing 15% fetal calf serum (FCS, NIBSC: Gibco, GSH: Boehringer-Mannheim) and antibiotics. Donor PBMC (12 × 10⁶) were then mixed with at least 5 × 10⁶ PBMC from the infected subjects (similarly separated on Ficoll gradient) and cultured in 14 ml medium containing 10–20 U/ml recombinant interleukin 2 (rIL-2, NIBSC: MRC AIDS Reagent Project, GSH: Boeringer-Mannheim). Cultures were monitored

<table>
<thead>
<tr>
<th>Country</th>
<th>Time in transit (days)</th>
<th>Number of blood samples</th>
<th>Positive isolations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>2</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Rwanda</td>
<td>≤2</td>
<td>69</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Thailand</td>
<td>≤2</td>
<td>69</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>≥4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Uganda</td>
<td>Total: 26</td>
<td>19</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Total: 80</td>
<td>31</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Total: 98</td>
<td>36</td>
<td>37</td>
</tr>
</tbody>
</table>

Total of 241 samples as of March 1994. Isolation frequencies are higher for Brazil, Rwanda, and Uganda as compared to the material collected until September 1993.

*In addition, nine samples were contaminated, and were not included in the calculation.
for viral growth by p24 antigen assay (NIBSC: Coulter, GSH: Innogenetics) twice a week for at least 4 weeks. The cultures were also tested for reverse transcriptase activity and inspected microscopically for cytopathic effects at regular intervals.

Infection of donor PBMC

Frozen supernatants from virus isolation cultures were shipped to the Karolinska Institute (KI) in Stockholm, where further biological characterization was carried out. Separation of HIV-negative donor PBMC and culture conditions were similar to those described above, with some differences as follows. The PHA concentration used for stimulation of donor PBMC was 2.5 μg/ml and the RPMI medium was supplemented with 10% FCS (Flow), 2 μg/ml polybrene (Sigma), and 10 U/ml rIL-2 (Amersham). PBMC cultures were infected with 1 ml of early virus-positive supernatant from primary isolation cultures, observed for cytopathic effects, and culture supernatants tested twice a week for reverse transcriptase activity and p24 antigen.

Determination of replication pattern

HIV-1 isolates were passaged twice in PHA-stimulated donor PBMC before the assay for replicative capacity could be carried out. In the assay, PBMC were infected with 20,000 cpm/10⁶ cells reverse transcriptase (RT) activity. Infected PBMC were cocultivated with cell lines at day 7 or 10, at the time of peak RT activity. For cocultivation 1 x 10⁶ PBMC were mixed with 3 x 10⁶ of each of the cell lines, U937-2, CEM, MT-2, and Jurkat-tat, as described. MT-2 cell cultures were tested for p24 antigen and observed for syncytia. Virus growth was considered to be positive when virus was detected in at least three consecutive tests.

RESULTS

Replicative capacity of HIV-1 isolates in primary isolation cultures

HIV-1 isolation efficiencies varied widely between the four sites (Table 1). Considering those samples that spent a maximum of 2 days in transit, the lowest isolation frequency (39%) was obtained with the Ugandan samples and the highest (86%) with the Brazilian samples. While 4 days in transit severely impaired the ability to isolate HIV-1 from Thai samples (0%), it had only a minimal effect on the isolation frequency of Ugandan samples; after 4 days in transit one-third of samples still yielded virus. The results suggest that a particular type of virus that readily replicates in *in vitro* culture is recovered from Ugandan samples, albeit from a minority, by the isolation procedure adapted. Another parameter that could conceivably affect isolation frequency is the number of patient’s cells used in the primary isolation culture. In the present experiments a minimum of 5 x 10⁶ cells was used from each infected individual. Under such conditions the cell numbers did not influence isolation efficiency (data not shown).

To characterize the replicative capacity of viruses in primary isolation cultures, two parameters were used. One is the time necessary to obtain the first p24 antigen-positive culture and the second is the time necessary to reach an OD value of 1. In parallel with antigen determinations, reverse transcriptase assays were also performed at GSH, with similar results (data not shown). While appearance of detectable virus in the primary isolation culture may depend on the patient's viral load at the time of sample collection, the time necessary for abundant virus replication (OD = 1) is an indicator of virus replicative capacity. To eliminate differences due to time after seroconversion, the replicative capacity of viruses has been depicted as a func-

FIG. 1. Virus replication in primary isolation cultures as a function of time after seroconversion. Each isolate is characterized by the number of days to first HIV-1 p24 antigen-positive culture supernatant (square) and to antigen value OD = 1 (diamond). These two are coincidental whenever the first antigen-positive value is higher than OD 1. HIV-1 isolates were obtained from Brazil (A), Thailand (B), Rwanda (C), and Uganda (C).
tion of time from seroconversion (Fig. 1). HIV-1 was detected in cultures from Brazilian samples within a week and an OD of 1 was reached in most cases within the second week of culture (Fig. 1A). In contrast, the majority of Thai samples yielded an appreciable amount of virus (OD = 1) only during the third week of culturing or later, even when virus was detectable at an early time (Fig. 1B). Viruses isolated from Rwandan samples showed an intermediary replication pattern (Fig. 1C) between the rapid Brazil and slower Thai viruses. Interestingly, in all three groups virus isolates derived from subjects with HIV-1 infection over 2 years tended to appear early and/or to replicate in culture with minimal delay.

Replicative capacity of HIV-1 isolates in cell lines

Viruses isolates were classified according to their capacity for growth in PBMC and in the Jurkat-tat, MT-2, CEM, and U937-2 cell lines. Viruses replicating on PBMC but not in any of the cell lines were rated as slow/low group 1 (s/l 1); if they also replicated on Jurkat-tat cells, they were rated s/l 2; if they, in addition to replication on PBMC and Jurkat-tat cells, replicated and induced syncytia in MT-2 cells and/or replicated transiently in other cell line(s), they were rated s/l 3. Rapid/high (r/h) designates replication on at least one cell line in addition to MT-2 and syncytium-inducing capacity (modified after Fenyö et al.).

A summary of viral isolate growth in relation to country of origin and genetic subtype is given in Table 2. Genetic screening was performed by use of the heteroduplex mobility assay on a 1.2-kb envelope fragment generated by nested PCR.

Five of the 13 Brazilian isolates of genetic subtype B, but none of the isolates from Thailand (subtype B or E) or Rwanda (subtype A), were able to replicate and induce syncytia in MT-2 cells. This is in line with the differences observed in primary cultures between HIV-1 isolates from these sites. Seven of the 11 Ugandan isolates readily replicated in at least one cell line.

Syncytium-inducing capacity of HIV-1 isolates in primary cultures and during early passage in PBMC

Two Brazilian viruses and eight Ugandan viruses induced syncytia in primary isolation cultures as well as on first and second passage in PBMC (Table 3). All other viruses were nega-

<table>
<thead>
<tr>
<th>Table 2. Replicative Characteristics of HIV-1 Isolates in Cell Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic subtype</td>
</tr>
<tr>
<td>Country</td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rwanda</td>
</tr>
<tr>
<td>Thailand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Uganda</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*a/r/h, rapid/high; s/l, slow/low; s/l 1, replication in PBMC only; s/l 2, replication in PBMC and Jurkat-tat cells but not in other cell lines; s/l 3, in addition to replication in PBMC and Jurkat-tat cells, replication and syncytium induction in MT-2 cells and/or transient replication in other cell line(s); r/h, replication on at least one cell line in addition to MT-2 and syncytium induction (modified after Fenyö et al.).

*bHMA, heteroduplex mobility assay, makes use of a 1.2-kb envelope fragment generated by nested PCR.17

<table>
<thead>
<tr>
<th>Table 3. Cytopathic Characteristics of HIV-1 WHO Network Isolates in Primary Culture and During Early Passage in PBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rwanda</td>
</tr>
<tr>
<td>Thailand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Uganda</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*HMA, heteroduplex mobility assay (see footnote b to Table 2).

*bOne isolate showed single cell killing.
Subtype

E

C

B

A

D

Genetic cytia-inducing type indicate 011 initially on cytium-inducing Interestingly, PBMC. change and or negative viruses through Brazil. BIOLOGICAL Virus Table aSI/NSI bObserved 021 023 003 004 018 020 019 009 001 003 006 011 004 014 024 026 021 025 020 028 004 026 014 030 003 017 023 025 + – – S S Changing, neg → pos Negative

Thailand

001 022 023 + – – S S Changing, neg → pos Negative

003 006 011 + S – – Changing, pos → neg Negative

009 014 024 + – – D – Negative

019 + – – – Negative

020 026 + – – s – Negative

021 + – – D + S – Negative

Brazil

018 019 020 021 028 + – – S S Changing, neg → pos Negative

004 026 + S – – Changing, pos → neg Positive

014 030 + S S S Positive

003 017 + – – – Negative

023 025 + – – s – Negative

* S, syncytia; D, cell killing; D + S, mixed cytopathic effect; s, small syncytia; –, no cytopathic effect.

Correlation of replicative and syncytium-inducing capacity of HIV-1 isolates

Comparison of syncytia inducing capacities in PBMC and MT-2 cells showed that all viruses rated as s/l 3 or r/h induced syncytia in both cell systems, irrespective of genetic subtype or geographic origin (Table 5). Among viruses rated s/l 2 or s/l 1, 8 out of 27 exhibited syncytia induction in PBMC but not in MT-2 cells. That some of the slow/low viruses can induce syncytia has been observed previously with genetic subtype B viruses.3 We now confirm and extend this finding to include viruses of subtype A, D, and E.

Table 5. Correlation of Replicative and Syncytium-Inducing Capacities of HIV-1 Isolates of Different Subtypes

<table>
<thead>
<tr>
<th>Phenotypea</th>
<th>s/l 1</th>
<th>s/l 2</th>
<th>s/l 3 or intermediate</th>
<th>r/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSI</td>
<td>NSI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>Genetic subtype</td>
<td></td>
<td></td>
<td>Syncytium induction in PBMCb</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>

3SI/NSI refers to replication and syncytium induction in MT-2 cells.

3Observed at second passage level.
Correlation of biological phenotype to V3 sequence

The charge of the entire V3 loop (Fig. 2A) or a 15 amino acid region bordering the tip of the loop (Fig. 2B) was compared to the slow/low and rapid/high replicative capacity of HIV-1 isolates. There was a strong association between increased positive charge and the rh phenotype, particularly when examining the 15 amino acid tip of the loop (Fig. 2B).

DISCUSSION

The aim of the present study was to compare markers for the biological phenotype of HIV-1 across genetic subtypes present in four distinct geographic areas. The virus isolates obtained from Brazil, Rwanda, and Thailand showed the slow/low replication pattern, Rwanda and Thailand s/l 1 and s/l 2, Brazil s/l 2 and s/l 3. If the occurrence of slow/low viruses early in HIV infection is a general rule, this was to be expected, since most samples from these three countries were collected within 2 years from seroconversion. For Ugandan subjects, seroconversion time was in most cases unknown. In the four cases where seroconversion time could be calculated, only one sample could be considered as obtained early in HIV-1 infection. As has been demonstrated for HIV-1 of subtype B,10,11 the replicative capacity of viruses obtained from subjects with progressive HIV-1 disease is influenced by the duration of infection. In this present study, most viruses isolated around 2 years from seroconversion or later were recovered within a few days of initiation of culture and replicated more readily than viruses isolated earlier during HIV-1 infection (Fig. 1). This suggests a pathogenesis-related increase in replicative capacity of viruses with diverse genetic subtypes over time. Recently, the biological characterization of 23 HIV-1 isolates of genetic subtype E from Thailand has been described.16 Seroconversion time was unknown and six individuals had a symptomatic HIV-1 infection. The viruses readily replicated in PBMC and in five cases (three from AIDS patients) also in cell lines. This further indicates a strong link between the time of infection and viral phenotype in individuals with increasing severity of HIV-1 infection, now including subtype E as well.

Differences in replicative capacities in primary cultures among slow/low viruses were also observed. HIV-1 isolates from Thailand appeared to replicate more slowly than viruses obtained from Brazil or Rwanda (Fig. 1). Even if viral antigen could be detected within a few days, appreciable amount of virus replication did not occur until several weeks later. In contrast, viruses from Brazil appeared early and replicated without delay (Fig. 1). The time necessary for detection of the first viral antigen-positive culture may depend on the virus load in the HIV-1 infected subject. Estimation of viral load by a semiquantitative PCR suggests that blood samples from Thailand and Brazil do indeed differ in viral copy number (Rübsamen-Waigmann, unpublished). While HIV-1 could regularly be detected in 0.5 μg DNA from Brazilian samples, no HIV-1 DNA could be amplified, even from 1 μg DNA, from Thai samples.

Apart from differences in the patients' viral load, true differences in virus replicative capacities could also be detected. The following parameters were used to characterize virus isolates: (1) the time necessary to reach antigen value OD = 1 in the primary isolation culture, (2) the ability to replicate in cell lines, (3) the ability to induce syncytia in PBMC and/or MT-2 cells. Virus replication in primary isolation cultures, PBMC passages, and cell lines was followed by antigen ELISA and reverse transcriptase assays in parallel. Low antigen values were concomitant with low reverse transcriptase activity across genetic subtypes, hence low antigen values reflect low amounts of virus. By all these criteria Thai viruses generally replicated slowly in PBMC and not at all in cell lines, and rarely induced syncytia. Conversely, Brazilian viruses replicated promptly in primary isolation cultures and in five (out of 13) cases replicated and induced syncytia in MT-2 cells as well (s/l 3/SD). Ugandan viruses were fastest replicating; in most cases the first antigen-positive value was well over OD 1, and syncytia were induced in primary isolation cultures and on subsequent passages in PBMC and in MT-2 cells. To be able to understand the biological significance of the different behavior of Ugandan viruses, work is in progress to collect virus isolates from individuals with known seroconversion times.

Comparison of the different classification systems for biological phenotyping showed that indeed there is an overlap and most of the viruses classified slow/low are NSI, while viruses
classified rapid/high are SI. There is, however, an intermediary group, denoted s/l 3, which is able to replicate and induce syncytia in MT-2 cells but not in any of the other cell lines used in the present study. While replication and syncytia induction in MT-2 cells define the SI phenotype, no replication or only transient replication in cell lines other than MT-2 characterizes the viruses as s/l 3 or intermediate phenotype. Furthermore, syncytia induction in PBMC may be the property of some of the viruses classified as s/l 1 or s/l 2 (Table 5). From the point of view of understanding pathogenesis it is important to recognize that the replicative capacity of HIV-1 isolates is a continuum, where s/l 1, 2, and 3 and r/h denote viruses with increasing replicative capacities. Using the MT-2 test alone allows a rapid estimation of the phenotype of a large number of HIV-1 isolates.

It has been suggested that the phenotype of subtype B HIV-1 isolates from Europe and North America,19,20 whether they appear as syncytium-inducing (SI) or non-syncytium-inducing (NSI) on MT-2 cells, can be predicted based on V3 sequence.21-25 Accordingly, positively charged amino acid substitutions at positions 11 and 25 within the loop of variable region 3 (V3 loop) of HIV-1 subtype B envelope have been shown to be associated with the SI phenotype. In an accompanying paper26 this finding has been extended to HIV-1 of subtype A, D, and E. We now demonstrate that comparison of the biological phenotype of HIV-1 isolates according to the rapid/high and slow/low classification system to the charge of the V3 loop shows a similar strong correlation of the rapid/high phenotype with highly charged V3 loops (Fig. 2).

The use of standard procedures for HIV-1 isolation allowed us to study changes in biological properties of viruses during early passage in vitro. The phenotypic marker used was syncytium induction, easily observed in primary isolation cultures as well as during subsequent passages in PBMC and in MT-2 cells. In fact, the majority of virus isolates from Brazil (7 out of 12) and from Thailand (6 out of 11) changed phenotype following isolation. At the same time, Ugandan viruses were stable in their cytopathic characteristics in PBMC. The changes in virus populations imposed by initial passage in PBMC are important to bear in mind when molecular and antigenic studies are performed and results are used to explain pathogenic processes in the patient. Which of these viruses—the virus that corresponds to the major sequence in the patient and may predominate in the early culture, or the virus that readily replicates in PBMC in vitro—is important for HIV-1 pathogenesis remains to be clarified.

ACKNOWLEDGMENTS

This study was partially supported by grants provided by WHO Global Programme on AIDS to Drs. B. Galvao-Castro, E. Karita, S. Sempala, C. Wasi, H. Rübsamen-Waigmann, H. Holmes, and E.M. Fenyo. Additional funding and support for this study were granted and directly provided to the participating laboratories by the MRC AIDS Directed Programme and EC Programme EVA (NIBSC), by SAREC, NUTEK, and the Swedish Medical Research Council (KI). The Georg-Speyer-Haus is supported by the Bundesministerium für Gesundheit and by the Hessische Ministerium für Wissenschaft und Kunst. The excellent technical assistance of L. Kranitz, E. Kurunci, I Müller, and N. Weber is gratefully acknowledged.

REFERENCES

Address reprint requests to:
Eva Maria Fenyo
MTC, Karolinska Institute
Box 280
171 77 Stockholm, Sweden