CASE REPORT

Canine low-grade intra-orbital myxosarcoma: case report

Cecília B. Campos, Fernanda C. Nunes, Conrado O. Gamba, Karine A. Damasceno, Cristina M. Souza, Liliane C. Campos and Geovanni D. Cassali

Laboratory of Comparative Pathology, Department of General Pathology, Biological Science Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil

Address communications to:
G. D. Cassali
Tel.: +553134092891
Fax: +55313409-2879
e-mail: cassalig@icb.ufmg.br

Abstract

Objective The aim of this study was to evaluate important clinical, morphological, histopathological, histochemical, and immunohistochemical characteristics in order to establish the diagnosis and prognosis of a low-grade intra-orbital myxosarcoma.

Animal studied A mongrel dog presented a 2-year history of a neoplastic mass behind the right eye.

Results The neoplasm presented a mesenchymal spindle and stellate cell proliferation with an abundant myxoid matrix, moderate anisocariosis, and a low mitotic index. It stained positive for vimentin, moderately positive for periodic acid-Schiff, and negative for Gomori trichrome stain and α-smooth muscle actin.

Conclusions One year following surgical excision, the patient remains disease free. The histological findings established a diagnosis of a rare canine intra-orbital low-grade myxosarcoma.

Key Words: dog, myxosarcoma, neoplasm, orbital

INTRODUCTION

Soft tissue sarcoma is a heterogeneous group of neoplasms of mesenchymal origin which represent 15% and 7% of all tumors of skin and subcutaneous tissues in dogs and cats, respectively.1 Myxoid soft tissue tumors are rare in domestic animals.2 According to the classification of the World Health Organization (WHO), the main variants in dogs are myxoma and myxosarcoma, as well as the myxoid liposarcoma.3 The chief distinguishing feature is the presence of mucin in the intercellular matrix. The tumors can occur at any site, but the skin is most commonly affected in canines, while the heart, liver, and spinal canal are considered unusual locations in this species.2 Five myxosarcomas involving the orbit have been described in a previous study that suggests that the orbit may be a predilection site for myxosarcoma in the dog.4

The biological behavior of myxosarcomas is characterized by a tendency for local invasion and a relatively high recurrence rate after surgical resection.5,6 Metastases are rarely described and are mostly found in the lung and regional lymph nodes.7–9 Therefore, the prognosis of myxosarcomas is poor due to high rate of local recurrence and metastasis.10–12

The aim of this work was to evaluate important clinical, morphological, histopathological, histochemical, and immunohistochemical characteristics in order to establish the diagnosis and prognosis of a low-grade intra-orbital myxosarcoma.

CASE REPORT

A mongrel dog presented a 2-year history of a neoplastic mass behind the right eye. Surgical excision of the tumor was performed through routine enucleation, and no metastasis was seen through chest radiographs and abdominal ultrasound.

Histochemical staining included periodic acid-Schiff (PAS) and Gomori trichrome (GT). Immunohistochemical staining included smooth muscle α-actin (α-SMA) and vimentin. Macroscopic examination of the surgical specimen measured 4.4 × 4.0 × 3.1 cm, and the tumor measured 2.7 cm in diameter. The neoplasm was circumscribed and presented a solid and uniform aspect of firm consistency and whitish color (Fig. 1). Microscopic examination revealed a mesenchymal spindle and stellate cell proliferation and an abundant myxoid matrix. Cells were characterized by moderate anisocariosis, clear cytoplasm, and a
mitotic index of approximately one mitosis per field at 40× magnification (Fig. 2). The histological grading system for soft tissue sarcomas evaluates neoplastic differentiation, mitotic index, and necrosis and classifies sarcomas in low, intermediate, and high grades. In our report, the myxosarcoma was classified as low grade due to the presence of well-differentiated neoplastic cells, low mitotic index, and absence of necrotic areas. The extracellular and intracellular components of the tumor were moderately PAS positive, confirming the production of mucopolysaccharides by tumor cells that constitute the extracellular matrix (Fig. 3). The same matrix was negative for GT, demonstrating the absence of collagen. The tumor was positive for vimentin, confirming a mesenchymal origin (Fig. 4). Tumor cells were not stained for α-SMA, denying a myoepithelial origin. Therefore, the neoplasm was diagnosed as a low-grade myxosarcoma. One year following surgical excision, the patient remains disease free, with no evidence of local recurrence or metastasis.

DISCUSSION

Myxosarcomas are rare soft tissue sarcomas that may occur at any anatomic location of the body, but the skin and subcutaneous tissue are the most common locations. Myxosarcomas are macroscopically characterized by a slightly elevated and poorly circumscribed mass and are usually located in the dermis or subcutaneous tissue. To the author’s knowledge, this is the first report of a canine low-grade myxosarcoma localized solely in the intra-orbital space. Previous reports have described five myxosarcomas involving the orbit characterized by larger tumors with solid and cystic components and infiltrative growth causing adjacent areas of osteolysis; in addition to a myxosarcoma involving the brain, retrobulbar space and eye of a dog, orbital myxomas and myxosarcomas have been reported as rare tumors in humans.

Orbital myxoid variants of a leiomyosarcoma likely arising from the iris dilator muscle in a male cat and of a leiomyoma in the iris of a dog have been previously described in the literature. In both case reports, enucleation was the recommended treatment protocol and diagnosis was based on morphologic features and immunohistochemical analysis, as described in the present case. Orbital and intracranial neoplasms may be primary, secondary to extension of adjacent tumors into the orbit or cranium, or the result of distant metastasis. In cats and dogs, more than 70% of orbital tumors are primary...
Figure 4. Neoplastic cells presenting vimentin-immunoreactive epithelial cells stained in brown (cytoplasm). ADVANCE HRP™. Antivimentin antibody, counterstained with Harris’s hematoxylin, 60×.

tumors. In addition, more than 90% of orbital tumors are malignant,15 as was seen in the present study.

Myxosarcomas are histologically characterized by proliferation of fibroblasts loosely arranged amid a myxoid matrix rich in polysaccharides,1,7 as demonstrated in this report. Moderate anisocariosis, high cellularity, and nuclear atypia were important features to distinguish the reported case from a myxoma. Nuclei are usually small and hyperchromatic, and mitoses are rare.7

Due to overlapping features of histological patterns, soft tissue sarcomas represent a diagnostic challenge. Morphologically, myxosarcomas should be differentiated from liposarcomas, fibrosarcomas, and leiomyosarcomas.7,8 Morphological characteristics were sufficient to rule out a diagnosis of liposarcoma, while the negative α-SMA and GT stains ruled out a diagnosis of leiomyosarcoma and fibrosarcoma, respectively.

This study demonstrated a distinct myxosarcoma with characteristics related to better prognosis, such as low histological grade and low mitotic index, contrary to literature findings that associate poor prognosis to this neoplasm.10–12 The studied histopathological, histochemical, and immunohistochemical techniques were important to obtain prognostic information and an adequate diagnosis.

CONCLUSION

Histopathological and immunohistochemical findings enabled the diagnosis of a rare canine intra-orbital low-grade myxosarcoma. Histological-grade analysis of this neoplasm is important to distinguish myxosarcomas that may be associated with good prognosis.

REFERENCES