Epidemiology and molecular characterization of Neisseria lactamica carried in 11–19 years old students in Salvador, Brazil

Ana Rafaela Silva Simões Moura, Cécilia Batmalle Kretz, Ítalo Eustáquio Ferreira, Amélia Maria Pithon Borges Nunes, Ivano de Filippis, José Cássio de Moraes, Mitermayer Galvão Reis, Alan John Alexander McBride, Xin Wang, Leila Carvalho Campos

ARTICLE INFO

Keywords:
Neisseria lactamica
Neisseria meningitidis
Oropharyngeal carriage
Vaccines
Meningococcal disease
Whole genome sequencing

ABSTRACT

Neisseria lactamica is a nonpathogenic commensal bacterium that is potentially associated with the development of natural immunity against N. meningitidis. However, the genetic variation present in natural populations of N. lactamica has not been fully investigated. To better understand its epidemiology and genetic variation, we studied N. lactamica carriage in 1200 students aged 11–19 years old in Salvador, Brazil. The carriage prevalence was 4.5% (54/1200), with no statistical difference among sex and age, although we observed a trend towards higher carriage prevalence among 11-year-old individuals. Whole genome sequence analysis revealed a higher genetic diversity among the isolates, with the presence of 32 different STs, 28 (87.5%) of which were new. A total of 21/50 (42%) isolates belonged to three different clonal complexes. While none of the isolates contained nadA or fliB alleles, we detected 21 Feta variants, 20 NhhA variants and two variants of PorB. The data provide detailed information on circulating N. lactamica isolates in adolescents in Brazil and are complementary to studies in other countries.

1. Introduction

Neisseria lactamica is a lactose fermenting diplococcus closely related to N. meningitidis, which lives in a commensal relationship with humans. This bacterium is frequently isolated from the nasopharynx of children, and is rarely associated with invasive disease as it lacks several virulence factors usually found in Neisseria meningitidis (Changal et al., 2016; Everts et al., 2010).

N. lactamica is of interest as it has been implicated in the age-related development of natural immunity against N. meningitidis (Gold et al., 1978). Although poorly understood, the prevalence of N. lactamica carriage in young children (<5 years of age) is significantly higher compared to N. meningitidis. Furthermore, these children developed significant IgG responses that were cross-reactive with serogroup A, B, and C meningococci soon after colonization with N. lactamica (Gold et al., 1978).

N. lactamica does not express the meningococcus protective capsule (Kim et al., 1989) and the outer-membrane protein PorA (Ward et al., 1992). However, there is similar relatedness among some outer membrane proteins, including porin B (PorB) (Bennett et al., 2008), iron-regulated enterobactin (FetA) (Bennett et al., 2009) and neisserial heparin-binding antigen (NhbA), although the variants are mainly not overlapping in the two species (Lucidarme et al., 2013).

The evidence of cross-reactivity responses against common antigens (Cann and Rogers, 1989; Troncoso et al., 2002) encouraged the development of anti-meningococcal vaccines based on N. lactamica (Griffiss et al., 1991; Finney et al., 2008; Gorringe et al., 2009). Some of the subcapsular antigens common to N. lactamica and N. meningitidis are included in the multiple component serogroup B meningococcal vaccine, 4CMenB (Serruto et al., 2012). The use of vaccines containing surface proteins shared with N. lactamica could interfere in the colonization of the nasopharynx by N. lactamica, potentially hampering the acquisition of natural immunity (Lucidarme et al., 2013; Troncoso et al., 2002). The impact of meningococcal vaccines on...
niesseria species with similar surface proteins warrants further investigation (Toneatto et al., 2017).

Although there is a degree of relatedness between some of the surface antigens, the commensal *N. lactamica* has not been prioritized to the same degree as *N. meningitidis*, especially with regard to studies on epidemiology and genetic variation (Alber et al., 2001; Bennett et al., 2005; Kristiansen et al., 2012; Luciarme et al., 2013). Furthermore, there is no information regarding the circulation and genetic diversity of *N. lactamica* isolates in Brazil.

Previously, we conducted a cross-sectional study to assess the meningococcal carriage status of 11–19-year-old student residents in Salvador (Nunes et al., 2016; Moura et al., 2017). Although the laboratory methodology was primarily designed for meningococcal isolation, all lactose-fermenting Gram-negative diplococci were registered and stored for further investigation. In the present study, we describe the epidemiology and the genetic profiles of *N. lactamica* isolates recovered from 11 to 19-year-old carriers in Salvador, Brazil.

2. Material and methods

2.1. Ethical considerations

This study was approved by the Ethics Committee of the Instituto Gonçalo Moniz, FIOCRUZ-BA (CAAE #16099713.1.0000.0040). Written informed consent from all study participants (or guardians) was obtained before sample and data collection.

2.2. Isolation and identification of *N. lactamica*

N. lactamica isolates (n = 54) were recovered from the oropharyngeal swabs collected from 1200 students, aged 11–19 years old, attending a total of 134 different public schools in Salvador, Brazil, during September to December 2014 (Nunes et al., 2016). The swabs were immediately used to inoculate selective agar medium (modified Thayer-Martin agar containing vancomycin, colistin, nystatin, and trimethoprim) and transferred to a polystyrene tube containing 1 ml of skim milk-tryptone-glucose-glycerin (STGG) transport medium (O’Brien et al., 2001). After 24–48 h of incubation, the plates were inspected and colonies with the characteristic morphology of *Neisseria* spp. were subcultured on blood agar medium for species identification by Gram staining, oxidase reaction, and carbohydrate utilization tests. The results were confirmed using API-NH1 strips (bioMérieux, Hazelwood, MO, USA), as described previously (Nunes et al., 2016). *N. lactamica* isolates were stored in brain heart infusion (BHI) broth containing 20% (v/v) glycerol at −80 °C.

2.3. Molecular characterization

Of the 54 *N. lactamica* isolates, 50 were characterized by whole genome sequencing (WGS). Genomic DNA was extracted as previously described (Kretz et al., 2016), and sequenced using MiSeq v2 chemistry (Illumina, San Diego, CA, USA). Genome assembly was carried out using CLC Genomics Workbench, ver. 9.0.0 (CLC bio, Aarhus, Denmark) with read trimming and mapping of reads back to contigs. The multilocus sequence typing (MLST) alleles, sequence types (STs) and clonal complexes (cc) were identified by comparison of the assembled genomes with *Neisseria* PubMLST database (http://pubmlst.org/neisseria/), using a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The presence and diversity of *porb*, *fetA* and *nhba* were investigated using sequence analysis as previously described (Kretz et al., 2016). Partial protein sequences were used for PorB, FetA typing, and full-length protein sequences were used for NHBA typing.

2.4. Phylogenetic analysis

Single nucleotide polymorphisms (SNPs) were identified using kSNP version 3 software (Gardner and Hall, 2013) with a kmer length of 25. A maximum likelihood phylogenetic tree was constructed from the core SNPs and the Tamura-Nei model, using MEGA7 (Tamura et al., 2013) and 500 bootstraps interactions.

2.5. Data analysis

Statistical analysis was done using STATA statistical software version 12 (College Station, TX, USA). The prevalence of *N. lactamica* carriage was calculated for the total sample and for subgroups (sex and age). Univariate analysis to identify exposure associated with *N. lactamica* carriage was performed; the chi-square test was used to determine statistical significance.

3. Results

3.1. *N. lactamica* carriage

Among the 1200 students screened, *N. lactamica* was isolated from 54 (4.5%) individuals (Nunes et al., 2016). There was no significant difference in carriage prevalence based on gender: 31 (57.4%) females and 23 (42.6%) males. Although the *N. lactamica* carriage rate was slightly higher among 11–year-old-students (9.7%), it was not statistically significant (Fig. 1). The prevalence of *N. lactamica* carriage across the various age groups was similar to that of *N. meningitidis* in the same population (Fig. 1). Only one participant was co-colonized by both *N. meningitidis* and *N. lactamica*.

3.2. Molecular characterization

A total of 50 *N. lactamica* isolates identified by conventional methods were characterized by WGS. Thirty-two different STs were identified, 28 (87.5%) of which were new. The majority of the isolates (29/50, 58%) lacked association within any known cc in the PubMLST database. A total of 21 (42%) isolates belonged to three different cc: cc613 (13/50; 26%); cc1494 (5/50; 10%); cc624 (3/50; 6%). We were unable to determine the ST of one isolate (M37159) due to a deletion of the *pdhC* housekeeping gene (Table 1). The phylogenetic analysis showed a high level of genetic variability with many different ST identified; and isolates belonging to the same ST and/or cc type to cluster together (Fig. 2). A total of 11329 core SNPs were identified with a difference of 80–5615 SNPs between all isolates analyzed.

Among the outer membrane proteins, two PorB variants were identified: 3–599 (10/50; 20%) and 3–596 (40/50; 80%), the latter being novel and most prevalent among the isolates (Table 1). All but nine of the isolates contained the FetA VR (variable region), with 21 FetA VRs in total. The most prevalent was F1-29 (12/41; 29.3%), and we identified four new variants: F1-143 (2/41; 4.9%), F1-204 (1/41; 2.4%), F4-68 (1/41; 2.4%), and F5-120 (1/41; 2.4%) (Table 1).
4. Discussion

N. lactamica carriage is normally higher during the early childhood years, decreasing with the age (Cartwright et al., 1987). The participants screened in the present study were aged 11–19 years old, younger children were not included in the study and this may explain the lack of association between age and *N. lactamica* carriage prevalence. However, our data revealed a trend towards higher carriage prevalence among the youngest (11-year-old) individuals, although this was not statistically significant. Similar findings were observed with gender; a higher proportion of *N. lactamica* prevalence is usually observed among females, possibly due to prolonged or closer contact with children (Cartwright et al., 1987). However, we found no significant differences in isolation of *N. lactamica* from male or female participants. This may be due to the age of the females enrolled in this study, many of whom may have no regular or prolonged contact with young children. The overall carriage rate (4.5%) among study participants is consistent with previous reports involving participants with higher age (Kremastinou et al., 2003; Leimkugel et al., 2007) and lower than those where young children were included (Saez-Nieto et al., 1985; Kremastinou et al., 1999; Bennett et al., 2005; Kristiansen et al., 2012).

The hypothesis that *N. lactamica* carriage could protect against meningococcal infections, either by occupying a biological niche that would otherwise be available to meningococci or by inducing natural immunity, highlights the importance of studying the population structure of *N. lactamica* (Lucidarme et al., 2013; Troncoso et al., 2002). Furthermore, administration of the 4CMenB vaccine and the presence of *N. lactamica* could be synergistic, by priming or boosting the immune response. However, vaccination could result in the elimination or prevention of *N. lactamica* carriage resulting in loss of natural immunity (Lucidarme et al., 2013). Previous studies demonstrated that *N. lactamica* populations are highly diverse (Bennett et al., 2005), and these findings have implications for the design of vaccines based on this organism. In the present study, the molecular data obtained by WGS was similar to those of previous studies; there was a high level of genetic variability among the *N. lactamica* isolates (Alber et al., 2001; Bennett et al., 2005; Kristiansen et al., 2012). Despite this diversity, we observed a high prevalence of cc613, followed by cc1494 and cc624, results that are consistent with those reported in the United Kingdom (Bennett et al., 2005) and Burkina Faso (Kristiansen et al., 2012).

Few studies have evaluated the distribution of outer membrane proteins among *N. lactamica* isolates (Bennett et al., 2008; Bennett et al., 2009; Lucidarme et al., 2013). In respect to the components of the 4CMenB vaccine, we found that none of the *N. lactamica* isolates contained *nadA* or *FHpB*, which are used in the vaccine preparation, in agreement with a previous report (Lucidarme et al., 2013). Rather, the *FetA* and *nhba* variants identified in this study were highly diverse within the same group and different STs, and only two *porB* variants were detected. Accordingly, as seen with the United Kingdom cc624 *N. lactamica* isolates (Bennett et al., 2009; Lucidarme et al., 2013), we observed *fetA* deletions only in isolates of cc624 and several STs for which no cc is assigned (Figs. 3 and 4). Comprehensive molecular epidemiology and surveillance including a higher number of isolates is needed to evaluate the impact of 4CMenB on *N. lactamica* carriage.

The analysis of the genetic diversity of the *N. lactamica* isolates using WGS provided crucial information regarding the genetic diversity of this poorly investigated bacterium. Moreover, these isolates provided valuable unexplored genomic data for further analysis that will assist our understanding of the carriage dynamics of *Neisseria* species.

In summary, *N. lactamica* carriage in Salvador showed no variation across the 11–19 age groups, in comparison with that seen for carriage of *N. meningitidis*. The genetic distribution and diversity of corresponding antigen genes among the *N. lactamica* isolates were similar to those reported in other studies. Continuous study on the genetic distribution and diversity of *N. lactamica* will be important to understand the carriage dynamics of this organism.
characterization of circulating strains of *N. lactamica* may contribute to a better understanding of meningococcal colonization, virulence factors and vaccine responses.

Acknowledgements

This work was supported by Ministério da Saúde, Brazil (grant number TC335/2013), and Fundação de Amparo à Pesquisa do Estado da Bahia (grant number SUS 007/2014). The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jmim.2018.03.007.

References

Ward, M.J., Lambden, P.R., Hecks, J.E., 1992. Sequence analysis and relationships among meningococcal class 3 serotype proteins and other porins from pathogenic and non-pathogenic Neisseria species. FEMS Microbiol. Lett. 73, 283–289.