DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis

DJera Amatullah1,2, Yuexin Shan1, Brittany L. Beauchamp3, Patricia L. Gali1, Sahil Gupta1,4, Tatiana Maron-Gutierrez5,6, Edwin R. Speck1, Alison E. Fox-Robichaud7, Jennifer L. Y. Tsang1,8, Shirley H. J. Mei9, Tak W. Mak10, Patricia R. M. Rocco5, John W. Semple1, Haibo Zhang1, Pingzhuo Hu11, John C. Marshall1, Duncan J. Stewart9, Mary-Ellen Harper8, Patricia C. Liaw8, W. Conrad Liles12, and Claudia C. dos Santos1,4; on behalf of the Canadian Critical Care Translational Biology Group

Abstract

Rationale: Effective and rapid bacterial clearance is a fundamental determinant of outcomes in sepsis. DJ-1 is a well-established reactive oxygen species (ROS) scavenger.

Objectives: Because cellular ROS status is pivotal to inflammation and bacterial killing, we determined the role of DJ-1 in bacterial sepsis.

Methods: We used cell and murine models with gain- and loss-of-function experiments, plasma, and cells from patients with sepsis.

Measurements and Main Results: Stimulation of bone marrow-derived macrophages (BMMs) with endotoxin resulted in increased DJ-1 mRNA and protein expression. Cellular and mitochondrial ROS was increased in DJ-1-deficient (−/−) BMMs compared with wild-type. In a clinically relevant model of polymicrobial sepsis (cecal ligation and puncture), DJ-1−/− mice had improved survival and bacterial clearance. DJ-1−/− macrophages exhibited enhanced phagocytosis and bacterialicidal activity in vitro, and adoptive transfer of DJ-1−/− bone marrow–derived mononuclear cells rescued wild-type mice from cecal ligation and puncture–induced mortality. In stimulated BMMs, DJ-1 inhibited ROS production by binding to p47phox, a critical component of the NADPH oxidase complex, disrupting the complex and facilitating Nox2 (gp91phox) ubiquitination and degradation. Knocking down DJ-1 (siRNA) in THP-1 (human monocytic cell line) and polymorphonuclear cells from patients with sepsis enhanced bacterial killing and respiratory burst. DJ-1 protein levels were elevated in plasma from patients with sepsis. Higher levels of circulating DJ-1 were associated with increased organ failure and death.

Conclusions: These novel findings reveal DJ-1 impairs optimal ROS production for bacterial killing with important implications for host survival in sepsis.

Keywords: DJ-1/PARK7; reactive oxygen species; sepsis; bacterial clearance; NADPH oxidase

(Received in original form April 9, 2016; accepted in final form October 11, 2016)

Supported by the Canadian Institutes of Health Research (MOP-130331 and OCN 126573; C.C.d.S.), the Early Research Award from the Ministry of Research and Innovation (ER 10-07-182; C.C.d.S.), the Ontario Graduate Scholarship (H.A.), and St. Michael’s Hospital Li Ka Shing Knowledge Institute Graduate Scholarship (H.A.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Correspondence and requests for reprints should be addressed to Claudia C. dos Santos, M.Sc., M.D., Interdepartmental Division of Critical Care, St. Michael’s Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1W8 Canada. E-mail: dosssantos@smh.ca

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org

Received in original form April 9, 2016; accepted in final form October 11, 2016

Copyright © 2017 by the American Thoracic Society

Am J Respir Crit Care Med Vol 195, Iss 7, pp 889–905, Apr 1, 2017

Internet address: www.atsjournals.org

Amatullah, Shan, Beauchamp, et al.: Role of DJ-1 in Bacterial Sepsis
At a Glance Commentary

Scientific Knowledge on the Subject: Cellular redox status plays a complex and dynamic role in host innate immune regulation in sepsis. DJ-1 (PARK7) is a well-established antioxidant with a protective role in the nervous system. Mutations in PARK7 result in autosomal-recessive familial Parkinson disease. There is emerging evidence that DJ-1 can also modulate immune signaling pathways; however, the role of DJ-1 in sepsis remains largely uninvestigated.

What This Study Adds to the Field: DJ-1 expression increases after cecal ligation and perforation–induced sepsis. Targeted deletion of DJ-1 in mice resulted in increased reactive oxygen species and proinflammatory markers and surprisingly improved survival in polymicrobial sepsis. These findings are similar to those observed for other deletion studies involving negative immune regulators. Our novel findings reveal that DJ-1 expression impairs reactive oxygen species production and bacterial clearance in sepsis. A robust innate immune response is vital for resolution of infection and subsequent host survival. Our findings are in line with the most recent sepsis-3 definition, which emphasizes the importance of a dysregulated host response to infection as a critical determinant of outcomes.

Sepsis with accompanying organ dysfunction remains one of the leading causes of morbidity and mortality in intensive care units (1). Despite recent advances, no specific therapies are available to reduce the burden of illness (2, 3). Traditional approaches including resuscitation, antibiotics, source control, and supportive care have improved outcomes (4, 5), whereas strategies to blunt the inflammatory response have failed to improve survival (6, 7). Alternative strategies that enhance host defenses have recently gained attention (8). Our group has used systemic administration of bone marrow–derived mesenchymal stem/stromal cells to reduce inflammation, organ dysfunction, and mortality, while enhancing bacterial clearance in experimental models of polymicrobial sepsis (9–13). Network analysis of global transcriptional responses modulated by mesenchymal stem cell administration in sepsis identified the Kyoto Encyclopedia of Genes and Genomes–Parkinson’s Disease pathway as markedly altered in septic tissues (14). Here we pursue one of the statistically significant gene products modulated in this pathway, Parkinson disease (autosomal recessive, early onset) 7 (PARK7), also known as DJ-1.

Originally identified as an oncogene (15), DJ-1 functions as a ubiquitous cytoprotective protein with diverse functions including transcriptional and mitochondrial regulation (16–22). Its main role, however, is providing protection from oxidative stress (15, 16). Loss of functional protein results in autosomal-recessive familial Parkinson disease (23, 24). In the case of sporadic disease, overwhelming and/or persistent oxidative stress results in loss of DJ-1 function, accumulation of reactive oxygen species (ROS), and eventual neuronal death (25–27). A recent report has questioned the role of DJ-1 as an antioxidant suggesting that rather than reducing ROS, DJ-1 is required for increased ROS production in sepsis (28).

Cellular redox status plays a complex and dynamic role in host innate immune regulation and survival in sepsis. Although excessive ROS can contribute to cell and tissue injury, free oxygen radicals and their oxidized substrates are key signaling molecules involved in pathogen recognition and clearance (29–32). Although little is known about the role of DJ-1 outside the nervous system, DJ-1–deficient Caenorhabditis elegans develop marked p38 mitogen-activated protein kinase activation and enhanced pattern recognition receptor expression (33). Moreover, increased respiratory burst occurs in DJ-1–deficient Litopenaeus vannamei after bacterial challenge (34). These data suggest a conserved and protective role for DJ-1 to minimize inflammation (ROS) during acute infections. Here we address the role of DJ-1 in bacterial sepsis. Some of the results of these studies have been previously reported as abstracts (35–37).

Methods

Plasma and Polymorphonuclear Cells from Patients with Sepsis
The Ethics Committee at McMaster University and St. Michael’s Hospital approved all study protocols. Study criteria and patient selection have been published (38). Written informed consent was obtained from all enrolled patients or substitute decision makers and from consenting adult healthy volunteers. Neutrophil isolation is described in the online supplement (39).

Animals
Protocols were approved by the Animal Care Committee at St. Michael’s Hospital. Wild-type (WT) C57Bl/6j (Jackson Laboratories, Bar Harbor, ME) and DJ-1–deficient mice (targeted deletion of DJ-1 [DJ-1−/−] [40]) on a C57Bl/6j background (20 backcrosses).

Cecal Ligation and Puncture Model
Male mice (25–30 g) were randomized to cecal ligation and perforation (CLP) or sham surgery (see the online supplement) (9, 41, 42).

Plasma/Serum DJ-1 Levels
DJ-1 levels in human plasma and mouse serum were determined by ELISA (Cusbio Biotech Co., Ltd., Wuhan, China), according to manufacturer’s instructions.

Serum Biochemistry Analyses and Measurement of Levels of Inflammatory Mediators
VetScan Comprehensive Diagnostic Profile (VetScan Test Panels, University Health Network, Toronto, Ontario, Canada) was used to perform serum biochemistry analysis. Inflammatory mediators were measured using Procarta Cytometric Bead Array (Affymetrix Panomics, Santa Clara, CA), according to manufacturer’s instructions (see online supplement).

Isolation of Bone Marrow–derived Macrophages
Bone marrow–derived macrophages (BMMs) were isolated as described (43).
ROS Measurements
Cellular and mitochondrial ROS in BMMs were assessed by CM-H2DCFDA and MitoSOX (see online supplement). Dihydrochlorofluorescein fluorescence was measured in lung and spleens lysates using the OxiSelect ROS/RNS assay kit (Cell Biolabs, Inc., San Diego, CA), according to manufacturer’s instructions. Values were normalized to protein input.

Respiratory Burst in Polymorphonuclear Cells
Burst measurement in septic polymorphonuclear cells (PMNs) is described in the online supplement (44).

Assessment of Cellular Bioenergetics, Phagocytosis, and Bacterial Killing
See the online supplement for further details.

Loss and Gain of Function
BMMs or THP-1 cells were transfected with mouse or human siRNA against DJ-1 (DJ-1 siRNA, loss of function), or a control

Figure 1. DJ-1 reduces inflammation and reactive oxygen species (ROS) production in bone marrow–derived macrophages (BMMs) after endotoxin challenge. (A) Real-time polymerase chain reaction results for changes in the expression of DJ-1 messenger RNA (mRNA) in BMMs exposed to saline or LPS (1 μg/ml) over 24 hours. Bar graphs represent fold change of DJ-1 expression over the saline control at each time point normalized to glyceraldehyde dehydrogenase (GAPDH) expression. (B) Representative Western blot and quantification (n = 5) showing increased DJ-1 protein expression in BMMs from wild-type (WT) compared with DJ-1/−/− mice after 24 hours of LPS stimulation (1 μg/ml) normalized to GAPDH protein expression. Bar graphs represent means ± SEM (*P < 0.05, Student’s t test). (C) Intracellular and (D) mitochondrial ROS in WT and DJ-1/−/− BMMs after saline and increasing doses of LPS (0.1–1 μg/ml). (E) Relative total glutathione content in WT and DJ-1/−/− BMMs after 24-hour exposure to saline or LPS (1 μg/ml). Bar graphs represent means ± SEM (*P < 0.05; **P < 0.001; two-way analysis of variance). (F) Levels of inflammatory mediators in LPS-treated BMMs cell lysate from WT versus DJ-1/−/− mice. BMMs were treated with or without LPS (1 μg/ml) for 24 hours, and inflammatory mediator response was determined using multiplex ELISA. Mediators profiled: IL-1β, IL-6, IL-12(p40), macrophage inflammatory protein (MIP)-1α, RANTES (CCL5), MIP-2, KC (chemokine [C-X-C motif] ligand 1), and monocyte chemoattractant protein-1 (MCP-1/CCL2). Bar graphs represent means ± SEM (n = 3; *P < 0.05; **P < 0.01, two-way analysis of variance). C = control; RANTES = regulated upon activation, normal T cell expressed and secreted; Sal = saline.
Figure 2. DJ-1 deficiency increases inflammation but improves survival and organ function after cecal ligation and perforation (CLP). (A) Serum levels of DJ-1 protein (pg/ml) in mice 24 hours after sham or CLP surgery. Data are presented as means ± SEM (n = 8–10 per group; ***P < 0.001; Student’s t test). (B) Levels of reactive oxygen species in lung homogenates from wild-type (WT) and DJ-1−/− mice 24 hours after CLP, presented as dihydrochlorofluorescein (DCF) levels per microgram of protein. Data are presented as means ± SEM (n = 6–8 per group; *P < 0.05; **P < 0.01; two-way
scrambled siRNA (ctrl siRNA; Ambion, Foster City, CA). Alternatively, BMMs were infected (50 multiplicity of infection) overnight with recombinant adenovirus overexpressing DJ-1 (Ad-DJ-1, gain of function) or a control adenovirus (Ad-Ctrl) (see online supplement).

Statistical Analyses
Mice were randomized (random number generator) to treatment groups, investigators blinded to genotype, and evaluators blinded to group assignment. Survival studies were analyzed using log-rank (Mantel-Cox) tests. Based on sample size calculation eight animals per group would allow us to detect a significant difference in 7-day mortality with 95% confidence. Unless otherwise stated, data are presented as mean ± SEM. Differences between groups were determined using Mann-Whitney, Student’s t test, one-way analysis of variance, or two-way analysis of variance followed by Bonferroni post hoc to account for both “genotype” and “treatment.”

Results

DJ-1 Reduces ROS Production and Inflammation in BMMs after Endotoxin Challenge
BMMs were isolated from WT and DJ-1–/– mice. DJ-1 mRNA and protein expression were up-regulated in WT BMMs in response to LPS (1 μg/ml) (Figures 1A and 1B). Levels of cellular ROS and mitochondrial ROS were comparable between genotypes at baseline. After stimulation, both cellular and mitochondrial ROS increased in DJ-1–/– BMMs compared with WT (Figures 1C and 1D). Proinflammatory mediator levels were also higher in DJ-1–/– BMM (Figure 1F). In addition, we have previously shown DJ-1 deficiency results in Nrf2 (nuclear factor, erythroid 2-like 2) degradation (16, 43). Consistent with a decrease in Nrf2 transcriptional activity, glutathione, heme oxygenase 1, glutathione peroxidase 1 (Gpx-1), and manganese superoxide dismutase expression was not increased in DJ-1–/– BMMs (Figure 1E; see Figure E1A). DJ-1 deficiency in BMMs had no effect on cellular viability (see Figure E1B).

DJ-1 Deficiency Increases ROS Production and Inflammation after CLP
We randomized WT and DJ-1–/– mice to a fluid resuscitated model of CLP-induced polymicrobial sepsis versus sham surgery. Elevated circulating DJ-1 levels were present in WT septic mice 24 hours after CLP (Figure 2A). ROS levels in lung lysates were higher in DJ-1–/– mice (Figure 2B). In the absence of DJ-1, circulating and pulmonary levels of proinflammatory mediators IL-1β, IL-6, tumor necrosis factor (TNF), and macrophage inflammatory protein (MIP)-1β and MIP-2 increased at 24 and 48 hours (except for TNF and MIP-1β in lungs) (Figure 2C). Increased pulmonary mediator levels were associated with enhanced cellular recruitment into the alveolar space by 48 hours (see Figure E2C). CLP resulted in a twofold to threefold increase in bronchoalveolar fluid total protein and IgM levels in DJ-1–/– and WT mice at 24 hours (Figure E2C), and this was sustained in DJ-1–/– mice at 48 hours.

DJ-1–Deficient Mice Had Improved Survival and Organ Function in Response to CLP
Despite evidence of increased ROS production and inflammation, DJ-1 deficiency significantly attenuated 7-day mortality in fluid-resuscitated, antibiotic-treated CLP mice (81.82 vs. 18.18%; *P = 0.0005) (Figure 2E). Although WT mice became lethargic, stopped grooming, and showed moderate distress after CLP, DJ-1–/– mice showed no or only mild distress. Body weight and temperature were not significantly different between genotypes (see Figure E2A). Resistance to CLP-induced mortality was observed in DJ-1–/– mice even in the absence of antibiotics (60 vs. 88.8% survival; *P = 0.006) (Figure 2D) and irrespective of perforation size (see Figure E2B).

Assessment of serum biochemical markers of organ dysfunction determined lactate levels, which increased equally in both CLP groups at 24 hours after CLP, were significantly lower in DJ-1–/– mice (Figure 2F). Albumin levels were decreased, whereas alanine amino transferase was increased equally in both genotypes. Total bilirubin, blood urea nitrogen, amylase, and glucose levels were lower in the DJ-1–/– mice (Figure 2F).

DJ-1 Impairs Bacterial Clearance and M1 Polarization of Professional Phagocytes
A potential explanation for improved survival is enhanced source control. DJ-1–/– mice had significantly lower bacterial counts in blood, lung, and spleen (12 and 24 h after CLP) (Figure 3A). Because M1 macrophages may enhance bacterial clearance, we isolated peritoneal cells from WT and DJ-1–/– mice 12 hours after CLP. In addition to enhanced expression of proinflammatory cytokines, absence of DJ-1 resulted in an increase in the proportion of CD80 (cell surface marker for M1 phenotype) and inducible nitric oxide synthase (iNOS) mRNA expression. In parallel, CD206+ (marker for M2 phenotype) (Figure 3B) cells, and YMI expression was significantly decreased, and a trend toward lower arginase 1 mRNA expression (Figure 3C). iNOS protein was
Figure 3. DJ-1 impairs bacterial clearance and M1 polarization of professional phagocytes. (A) Bacterial load, represented as cfu/ml, in blood, lungs, and spleen 12 and 24 hours after cecal ligation and perforation (CLP) surgery. In the box-and-whisker plots, the median is indicated with a horizontal line in the interior of the box, and the maximum and minimum are at the ends of the whiskers (n = 5–8 per group; *P < 0.05; **P < 0.01; two-way analysis of
increased in WT and DJ-1\(^{-/-}\) BMMs (Figures 3D and 3E), whereas arginase 1 protein levels were decreased. iNOS expression was increased in DJ-1\(^{-/-}\) lungs and spleens 24 hours after CLP surgery (see Figures E3A and E3B).

DJ-1 Impairs Bacterial Killing

Improved bacterial clearance in vivo was associated with enhanced phagocytosis by DJ-1\(^{-/-}\) peritoneal cells in vitro. We incubated WT and DJ-1\(^{-/-}\) peritoneal cells isolated 12 hours after CLP (Figure 4A; see Figure E4A) or after thioglycollate stimulation (see Figure E4B) with fluorescent *Escherichia coli* bioparticles. Phagocytosis of *E. coli* bioparticles also increased in DJ-1\(^{-/-}\) compared with WT BMMs and this effect was sustained over time (Figure 4B). Compared with WT BMMs, increased pHrodo (pH sensitive dye) labeled *E. coli* and *Staphylococcus aureus* was also observed in DJ-1\(^{-/-}\) BMMs at baseline (nonstimulated) and after 1-hour prestimulation with LPS (Figure 4C), consistent with acidification of the phagolysosomal compartment. Inhibition of ROS generation with Bay-117082 (an inhibitor of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha [IκB-α]) or mitoTEMPO (a mitochondria-targeted superoxide dismutase mimetic), attenuated the enhanced phagocytic phenotype in DJ-1\(^{-/-}\) BMMs (see Figures E5A and E5B).

To determine bactericidal activity, we infected WT and DJ-1\(^{-/-}\) BMMs with *E. coli* or *S. aureus* for 30 or 60 minutes and treated with gentamicin. Bacteria that are not engulfed (remain extracellular) are killed by the antibiotic. After cell lysis, the resulting bacterial colonies represent intracellular viable bacteria that phagocytes have failed to kill. DJ-1\(^{-/-}\) BMMs had significantly decreased number of viable bacterial colonies 30 and 60 minutes postinfection compared with WT BMMs (Figure 4D).

Adoptive Transfer of DJ-1-Deficient Bone Marrow-derived Mononuclear Cells Improved Survival in WT Mice after CLP Surgery

To demonstrate that DJ-1-deficient phagocytes are more effective in eliminating bacteria early in the course of sepsis, conferring a beneficial survival effect, we isolated bone marrow-derived mononuclear cells (BMCS) from WT and DJ-1\(^{-/-}\) mice and administered to WT mice 6 hours after the induction of CLP (Figure 5A). Treatment with DJ-1\(^{-/-}\) BMCS significantly improved 7-day survival after CLP surgery compared with WT BMCS and saline controls (Figure 5B).

DJ-1 Reduces Mitochondrial ROS Production

It is unknown whether loss of DJ-1 affects mitochondrial respiration in professional phagocytes but ineffective mitochondrial respiration generates ROS. Accordingly, we measured mitochondrial respiration and uncoupling in WT and DJ-1\(^{-/-}\) BMMs. DJ-1 partially localized to mitochondria in unstimulated and LPS-stimulated BMMs (Figure 5C). Basal oxygen consumption rate, a measure of mitochondrial respiration, was not significantly different between DJ-1\(^{-/-}\) and WT BMMs. Exposure to TNF, however (6 h), unmasked a significant decrease in oxygen consumption rate in DJ-1\(^{-/-}\) BMMs (Figures 5D and 5E). No difference was noted after 24 hours of treatment (data not shown). Although there was a modest increase in proton leak in DJ-1\(^{-/-}\) BMMs at baseline, there was no significant difference after treatment (Figure 5F). Furthermore, addition of carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone, which uncouples proton pumping from ATP synthesis, maximized oxygen consumption rate in WT's while DJ-1\(^{-/-}\) BMMs remained unresponsive (Figures 5F and 5G). Therefore, although 6 hours of TNF treatment had profound effects on cellular metabolic pathways (decreased basal and maximal respiration) in DJ-1\(^{-/-}\) cells compared with WT cells, ROS emission increased normally in DJ-1\(^{-/-}\) cells in response to a longer exposure to TNF (24 h) suggesting another mechanism may explain increased ROS after proinflammatory stimulation.
Figure 4. Effect of DJ-1 deficiency on bacterial clearance and phagocytosis. (A, top) Representative images of wild-type (WT) and DJ-1−/− peritoneal cells isolated after 12 hours of cecal ligation and perforation surgery and incubated with Alexa Fluor 488–conjugated *Escherichia coli* (K-12 strain) BioParticles (Life Technologies) for 30 minutes (captured at ×100). (A, bottom) Quantified phagocytosis of Alexa Fluor 488–conjugated *E. coli* in WT and DJ-1−/− peritoneal cells, represented as means ± SEM (**P < 0.01) of fluorescence intensity per cell from 10 representative images. Scale bars: 20 μm. (B) Representative fluorescence images of WT and DJ-1−/− bone marrow–derived macrophages (BMMs) with green pHrodo *E. coli* bioparticles and blue (DAPI) nuclear staining over a course of 30 minutes. (C) Measurement of phagocytic function of WT and DJ-1−/− BMMs using *E. coli* or *Staphylococcus aureus* pHrodo Bioparticles with no stimulation and 1 hour prestimulation with LPS (1 μg/ml). Assays were conducted in 96-well plates in triplicate and repeated twice. Data were normalized to baseline values at time 0 and presented as % fluorescence intensity. The fluorescence intensity was read using SpectraMax plate reader. Results are presented as means ± SEM (*P < 0.05). (D) Measurement of bacterial killing activity in WT and DJ-1−/− BMMs by gentamicin protection assay at 30, 60, or 90 minutes after *E. coli* or *S. aureus* infection. Data are presented as means ± SEM (n = 5–6 per group; *P < 0.05; **P < 0.01; two-way analysis of variance). CFU = colony-forming unit; DAPI = 4’,6-diamidino-2-phenylindole; Fluor. = fluorescence.
Figure 5. Adoptive transfer of bone marrow-derived mononuclear cells (BMCs) and role of DJ-1 in mitochondrial respiration. (A) Schematic of adoptive transfer of DJ-1-deficient BMCs in wild-type (WT) mice exposed to sham or cecal ligation and perforation (CLP) surgery. (B) Percent survival of WT mice at 7 days (fluid resuscitation, and buprenorphine and imipenem-cilastatin administration) after CLP-induced sepsis with administration of WT and DJ-1−/− BMCs 6 hours after sham or CLP surgery (*P < 0.05; Student’s t test comparing CLP + WT BMCs vs. CLP + DJ-1−/− BMCs). (C) Representative fluorescent images of DJ-1 expression (red), mitochondria (green), merged (yellow), and with nuclear (blue) immunostaining at baseline and after 24 hours of LPS (1 μg/ml) treatment (captured on Olympus Upright Microscope at magnification of ×60). Assessment of cellular energetics and oxidative stress. (D) Representative oxygen consumption rate (OCR) curve in WT and DJ-1−/− bone marrow-derived macrophages (5 × 10⁴) after 6 hours of saline or tumor necrosis factor (TNF) treatment (10 ng/ml) using Seahorse Bioanalyzer with sequential treatment of oligomycin (1 μg/ml), carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) (1 μM), and antimycin A (1 μM). Data are presented as means ± SEM. *P < 0.05, analysis of variance compared with WT saline; †P ≤ 0.05, compared with WT TNF, analysis of variance. (E) Basal respiration rate, (F) ATP production and proton leak, and (G) maximal respiration calculated from three independent experiments. Data are presented as means ± SEM (*P < 0.05; **P < 0.01; two-way analysis of variance). Sal = saline.
Figure 6. DJ-1 negatively regulates the NOX2 oxidase complex activity. (A) Real-time polymerase chain reaction results for changes in the expression of messenger RNA for Nox2 normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in bone marrow–derived macrophages (BMMs) exposed to saline control (C) or LPS (1 mg/ml) over 24 hours. Data are presented as fold change over wild-type (WT) saline control with means ± SEM.
DJ-1 Binds to p47phox Disrupting NADPH Oxidase Complex and Promoting Nox2 Degradation

We investigated if DJ-1 inhibits ROS production by binding to components of the NADPH oxidase. p47phox subunit coimmunoprecipitated with DJ-1 at baseline and after LPS stimulation in both BMM and RAW cells (Figure E6E) indicating DJ-1 binds to p47phox. We did not observe binding of DJ-1 with the Nox2 or p67phox subunits. We postulated binding of DJ-1 to p47phox could result in decreased ROS production because of loss of complex stability. After inhibition of de novo protein synthesis with cycloheximide, Nox2 protein levels decreased over time in WT while remaining stable in DJ-1 BMMs exposed to E. coli bacteria (Figure 6F; see Figure E7D). Absence of DJ-1 reduced Nox2 ubiquitination after E. coli treatment (Figure 6G; see Figure E8E). The role of DJ-1 in complex disassembly was further supported by the evidence that cotreatment with the proteasome inhibitor, MG132, partially prevented decreased Nox2 protein expression in DJ-1−/− BMMs (Figure 6H).

Absence of DJ-1 Also Protects from Pseudomonas aeruginosa Peritonitis

To address whether absence of DJ-1 was protective in other bacterial infection models, we administered Pseudomonas aeruginosa intraperitoneally to WT and DJ-1−/− mice. In line with our previous results, DJ-1−/− mice were resistant to Pseudomonas-induced mortality compared with WT mice (Figure 7A).

DJ-1 Expression Modulates Bacterial Killing and Respiratory Burst in Human Phagocytes

We further investigated the role of DJ-1 in human cells. DJ-1 protein expression was increased in THP-1 (human monocyte) cells exposed to LPS and in PMNs from patients with sepsis (Figures 7B, 7D, and 7E). Knockdown of DJ-1 in phorbol 12-myristate 13-acetate-activated THP-1 cells (see Figure E6B) resulted in increased E. coli or S. aureus bacterial killing (Figure 7C). Similarly, DJ-1 knockdown in PMNs from patients with sepsis (n = 5) modestly increased baseline respiratory burst in septic PMNs (Figure 7F). This increased after administration of phorbol 12-myristate 13-acetate, an activator of respiratory burst (Figure 7F). Conversely, 1 hour pretreatment with diphenyleneiodonium, an NADPH oxidase inhibitor, abolished the enhanced respiratory burst in DJ-1−/− BMMs (Figure 7F). Silencing DJ-1 in PMNs (septic or healthy) did not significantly alter cell death (apoptosis; see Figure E6C).

Circulating DJ-1 Levels Are Increased and Correlate with Markers of Sepsis Severity and Organ Dysfunction in Patients

To determine if increased DJ-1 levels were also associated with poor outcomes in humans, we further identified elevated circulating levels of DJ-1 in patients with sepsis (n = 60) compared with healthy control subjects (n = 12) (Figure 8A). Higher DJ-1 protein levels were associated with increased mortality (Figure 8B), documented bacteremia (Figure 8C), and higher multiorgan dysfunction scores on day of study enrollment (Figure 8D). Specific components of the multiorgan dysfunction score also showed significant correlations with DJ-1 levels (see Figure E9). Collectively, these findings indicate DJ-1 is a potent antioxidant that plays a critical role in human sepsis and clinical outcomes.

Discussion

Our findings reveal a role for DJ-1 in the innate immune response to bacterial sepsis and pathogen clearance. Patients with sepsis who die or develop significant organ dysfunction have increased circulating DJ-1. Absence of DJ-1 in vitro and in vivo resulted in increased ROS and inflammatory mediator expression. Despite an increased proinflammatory and prooxidant state, DJ-1 deficiency confers striking resistance to polymicrobial sepsis in a resuscitated and antibiotic-treated clinically relevant animal model of sepsis. Even in the absence of antibiotics, absence of DJ-1 protects against polymicrobial sepsis-induced mortality by inducing ROS-mediated effective and rapid bacterial clearance. Moreover, adoptive transfer of DJ-1−/− deficient BMCs can confer resistance to bacterial sepsis to WT mice. Here we demonstrate that in innate immune cells, DJ-1 expression increases after an inflammatory (LPS) or bacterial stimulus. Available DJ-1 then binds to p47phox disrupting NADPH oxidase complex assembly and/or contributing to Nox2 degradation thereby decreasing ROS production. Phagocytes that lack DJ-1 are consequently more efficient at engulfing and killing bacteria.
Regulating ROS balance is vital for mounting an appropriate immune response without excessive oxidative damage to resident host tissues. In macrophages and neutrophils, bacterial phagocytosis results in NADPH oxidase 2 complex assembly at the phagosomal membrane. Membrane (gp91^phox/Nox2 and p22^phox) and cytosolic (p47^phox, p67^phox, p40^phox, and Rac1) subunits come together leading to an activated complex capable of generating ROS (46). Generation of ROS (specifically superoxide) constitutes a fundamental pathway for pathogen clearance (31, 46–48). In this study, we demonstrate that DJ-1 expression impairs host defense against bacterial infection by substantially limiting ROS production by the NADPH oxidase complex. DJ-1–deficient BMMs had enhanced expression and activity.

Figure 7. DJ-1 expression modulates bacterial killing and respiratory burst in human phagocytes. (A) Percent survival of wild-type (WT) and DJ-1^−/−^ mice at 7 days with fluid resuscitation and buprenorphine (**P < 0.01; log-rank/Mantel-Cox test) after intraperitoneal (i.p.) injection of Pseudomonas aeruginosa infection. (B) Representative Western blot showing increased DJ-1 and oxDJ-1 protein expression in THP-1 cells with increasing concentration of LPS (0.1–10 μg/ml) and tumor necrosis factor (TNF; 1–50 ng/ml) stimulation normalized to β-actin protein expression. (C) Measurement of bacterial killing activity in phorbol 12-myristate 13-acetate (PMA)-activated human monocytic (THP-1) cells with control siRNA or DJ-1 siRNA by gentamicin protection assay at 60 minutes after Escherichia coli or Staphylococcus aureus infection. Data are presented as means ± SEM (n = 5 per group; *P < 0.05; **P < 0.01; analysis of variance). (D and E) Representative Western blot and quantification showing increased DJ-1 protein expression in polymorphonuclear cells (PMNs) collected from healthy donors or patients with sepsis normalized to β-actin protein expression (**P < 0.01). (F) Respiratory burst in septic PMNs at 24 hours transfected with control or DJ-1 siRNA at baseline (no treatment), or after treatment with PMA, or 1 hour pretreatment with diphenyleneiodonium (DPI). Data are presented means ± SEM (n = 5 per group; *P < 0.05 compared with control baseline; **P < 0.05 compared with DJ-1 baseline; *P < 0.05 compared with groups treated with PMA only for respective genotypes). CFU = colony-forming unit; Ctrl = control; siRNA = short interfering RNA.
Figure 8. DJ-1 protein expression in patients with sepsis. Plasma DJ-1 protein level (log ng/ml) was increased in (A) patients with sepsis (n = 60) versus control subjects without sepsis (n = 12), (B) patients with severe sepsis who died (n = 32) compared with those alive at 28 days (n = 28), and (C) patients without (n = 34) and with documented bacteremia (n = 23). Data are presented as means ± SEM (*P < 0.05; **P < 0.01; ***P < 0.001; Mann-Whitney test). (D) Correlation analysis of plasma DJ-1 levels with enrollment multiorgan dysfunction score (MODS). (E) Schematic of DJ-1 role in regulating NADPH oxidase and bacteria clearance. In innate immune cells, after an inflammatory (LPS) or bacterial stimulus, DJ-1 expression is increased. Available DJ-1 can directly scavenge superoxide ions and reduce reactive oxygen species (ROS). Alternatively, DJ-1 may bind to p47phox, thereby disrupting NADPH oxidase complex assembly, or ubiquitinate Nox2, subsequently leading to decreased ROS production. MPO = myeloperoxidase.
of the NOX complex. DJ-1 has been previously shown to regulate Nox4 in renal proximal tubule cells (49), further reinforcing the critical role of DJ-1 in regulating redox status in cells. Moreover, here absence of DJ-1 also results in decreased expression of Nr2f2-dependent genes. This is in keeping with our previous data showing DJ-1 protects Nr2f2 from Keap-1-mediated degradation (43).

In addition to the NADPH oxidase, the mitochondrial electron transport chain is an alternative contributor of ROS. Mitochondrial ROS are recognized as critical in innate immune activation and facilitation of antibacterial activity (50, 51). ROS emission per unit O2 consumed is highest when OXPHOS bioenergetics in DJ-1 degradation (43). Our results differ from those of a recent report that DJ-1 binding to p47phox is required for NADPH oxidase-dependent ROS production (28). However, those findings are surprising given the well-established antioxidant role of DJ-1 highlighting increased ROS and proinflammatory markers in various DJ-1–deficient models of inflammation (25, 40, 49, 58, 68). DJ-1–deficient astrocytes, for instance, have increased ROS, IL-6, and iNOS after LPS stimulation (69). Likewise, bone marrow–derived mast cells and mice lacking DJ-1 have higher ROS and TNF levels after DNP-specific IgE stimulation (65). These findings support the concept that DJ-1 contributes to a critical role for ROS overload through the crosstalk between mitochondrial ROS production with implications for host immunity (70, 71). Here we show that binding of DJ-1 to p47phox acts to inhibit p47phox phosphorylation, preventing subsequent activation of the complex and ROS production. Phosphorylation of p47phox is a key event in the assembly and translocation of the cytosolic components as well as the activation of the NOX complex (45, 72). Furthermore, in the absence of DJ-1, Nox2 ubiquitination was reduced after exposure to LPS or E. coli bacteria, suggesting that DJ-1 regulates the stability of the NADPH oxidase protein. Treating cells with the proteasome inhibitor MG132 prevented Nox2 degradation in DJ-1 competent BMMs. A schematic diagram of our proposed mechanism is presented in Figure 8E.

Importantly, human monocytes and PMNs from patients with sepsis can be made more efficient in bacterial phagocytosis and killing by transfection with an anti–DJ-1 siRNA. Based on our findings, DJ-1 contributes to a critical cell protection negative feedback mechanism to prevent excessive oxidative stress and inflammation. Reduced ROS production, however, significantly affects bacterial killing and clearance resulting in early mortality from bacterial sepsis. Interestingly, deletion of other negative regulators of ROS and innate immune signaling, such as NRROS, KLF, and ATF3, also results in improved outcomes in acute bacterial infection models (70, 73, 74). Here we also highlight how targeting endogenous mechanisms to maximize early clearance of bacteria may be beneficial for host survival. Collectively, our results challenge the paradigm that morbidity/mortality are determined by degree or severity of inflammation alone. These findings demonstrate dissociation between sepsis outcomes (organ injury and death) and inflammation. They also emphasize that therapeutic strategies designed to simply decrease ROS and inflammation in early sepsis may be ultimately detrimental. This is in accordance with the current Sepsis-3 definition, which emphasizes the need to screen and identify underlying infection, and to distinguish infection-related organ dysfunction from that of noninfectious insults, such as trauma and burns (75).

Most studies to date have focused on the role of DJ-1 as an ROS scavenger (55, 56). DJ-1, however, has a variety of other functions including protein chaperone, protease, RNA binding, and regulator of autophagy (17, 18, 20, 52, 57–62). It is unclear whether multiple or specific functions of DJ-1 are involved. In addition to its intracellular functions, DJ-1 is secreted into extracellular regions (63, 64) but its extracellular role remains enigmatic. Further studies will elucidate the role of extracellular DJ-1 in sepsis.

The role of DJ-1 in the host immune response has only been recently recognized. DJ-1–/– mice exhibit augmented passive cutaneous anaphylactic reactions and antigen-stimulated mast cell degranulation (65) suggesting a role for DJ-1 in adaptive immune response modulation. In addition, CD3–/– T-cell migration is increased in DJ-1–/– mice. DJ-1–/– Th1 and Th17 CD3+ T-cell subsets had increased production of IFN-γ and IL-17 (66). Lack of DJ-1 leads to enhanced ROS production, higher 5gk1 (serine/threonine-protein kinase 5gk1 or serum glucocorticoid-regulated kinase 1) expression, and development of regulatory T cells (67). DJ-1 deficiency modifies the CD4+/CD8+ T-cell ratio (67). These data are in keeping with our findings that absence of DJ-1 promotes early M1 polarization. We speculate that the enhanced bacterial killing phenotype conferred by DJ-1 deficiency may be one explanation for the conservation of this mutation through evolution.

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors thank Dr. David Park (University of Ottawa) for the DJ-1 adenovirus vector and Julie Khang (University of Toronto) for her help with the multiplex cytokine assays.
References

