Prevalence and distribution of *Angiostrongylus cantonensis* (Nematoda, Angiostrongylidae) in *Achatina fulica* (Mollusca, Gastropoda) in Baixada Santista, São Paulo, Brazil

Laura Rocha Guerino[1],[2], Iracy Lea Pecora[2], Marcel Sabino Miranda[3], Crystiane Aguiar-Silva[4], Omar dos Santos Carvalho[4], Roberta Lima Caldeira[4] and Reinaldo José da Silva[1]

[1]. Laboratório de Parasitologia de Animais Silvestres, Departamento de Parasitologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil. [2]. Laboratório de Moluscos, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, SP, Brasil. [3]. Laboratório de Malacologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brasil. [4]. Laboratório de Helmintologia e Malacologia Médica, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brasil.

Abstract

Introduction: *Angiostrongylus cantonensis* causes eosinophilic meningoencephalitis in humans. Worldwide expansion of this nematode is linked to the dispersion of their hosts. This study aimed to determine the prevalence of *A. cantonensis* infection in *Achatina fulica* in the nine municipalities that make up Baixada Santista, São Paulo, Brazil. **Methods**: *Angiostrongylus cantonensis* larvae were analyzed using optical microscopy. We performed polymerase chain reaction and restriction fragment length polymorphism using restriction endonuclease *ClaI*, directed to the internal transcribed spacer region 2 of *A. cantonensis* larval DNA. **Results**: Of the 540 snails analyzed, 117 (21.7%) were infected by *A. cantonensis*. For morphological and morphometric analyses, 60 larvae were used. Second-stage larvae were, on average, 358.2µm long and 26.4µm wide, while *WKLUGVWDJHODUYDHZHUHRQDYHUDJH—PORQJDQG—PZLGH7KHWDLOVRIWKHODUYDHHQGHGLQD¿QHWLS*

Conclusions: All municipalities comprising Baixada Santista had *A. fulica* that were naturally infected with *A. cantonensis*. All of the observed characteristics were typical of the species.

INTRODUCTION

Two of the 19 species from the *Angiostrongylus* genus can infect humans: *Angiostrongylus costaricensis* (Morera & Céspedes, 1971), which causes abdominal angiostrongyliasis and *Angiostrongylus cantonensis* (Chen, 1935), which is the etiologic agent of eosinophilic meningoencephalitis, also called rat lungworm. *A. cantonensis* has been observed in several regions of the world[1,2], and they were distributed from Eastern Asia to other continents by two main hosts: rats (definitive hosts) and *Achatina fulica* Bowdich, 1822 (one of the intermediate hosts), especially during the Second World War. Several species of land and freshwater snails have also been found to be naturally infected with *A. cantonensis*.[3]-[14].

In Brazil, the occurrence of *A. cantonensis* has been reported in all states except for Acre.[9,17]. Man, being an accidental host, acquires parasitosis when eating foods contaminated with stage-three larvae (L3), raw or undercooked mollusks, and paratenic hosts such as shrimp, frogs, fish, and flatworms,[18-20], as well as crabs and lizards.[21,22]. In humans, these parasites migrate to the central nervous system (CNS), where they die in the meninges, causing inflammatory reactions.[23,24].

Achatina fulica plays a crucial role in the global dispersion of *A. cantonensis*,[1,2,22,25,26], since it is present in most areas where this nematode is endemic. These mollusks are associated with an anthropic environment, and once established, their population can significantly increase.[27]. Remains of human activity favor the adaptation of this mollusk, as such remains provide food and shelter.[18]. In Brazil, this mollusk has high potential to be involved in the transmission of *A. cantonensis* owing to its wide distribution, including to different ecosystems.[28,31].

In the present study, the role of *A. fulica* as an intermediate host for *A. cantonensis* in the municipalities comprising Baixada Santista, São Paulo State, Brazil, was investigated.
METHODS

Samples were collected from January to July, 2012. Specimens were captured in vacant lots in urban areas or where there were forest fragments or waste remains from 90 sites in the nine municipalities comprising Baixada Santista, São Paulo State: Bertioga, Cubatão, Guarujá, Itanhaém, Mongaguá, Santos, São Vicente, Peruíbe, and Praia Grande (Figure 1). Six adult snails were collected from ten sites in each municipality, for a total of 540 individuals. All 90 sites were characterized as to sanitary and georeferenced conditions. After identification of the snail, performed in accordance to Simone, the digestion procedure of mollusks was individually performed in accordance with methods of Wallace and Rosen, followed by the Baermann method. A. cantonensis larvae were then counted and subjected to molecular analysis. The DNA was extracted from the pool of larvae from each snail using the Wizard Genomic DNA Purification Kit (Promega), according to the manufacturer’s instructions. The deoxyribonucleic acid (DNA) was subjected to polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFLP), and the primers used were directed to the internal transcribed spacer region 2 (ITS2) of ribosomal DNA (rDNA). NC1 (forward; 5’ACGTCTGGTTCAGGGTTGTT-3’) and NC2 primers (reverse: 5’TTAGTTTCTTTTCCTCCGCT-3’) were designed by Gasser and anchored in the conserved regions in the final portion of subunit 5.8S and the initial portion of subunit 28S. Further, cleavage of this amplicon was performed with endonuclease ClaI (Biolabs) and the profiles were compared to those of A. cantonensis and A. costaricensis established by Caldeira. For morphological and morphometric analysis, 60 larvae were used, which were fixed in 70% ethanol, clarified with Amann lactophenol, and analyzed (Leica Application Suite LAS V 3.8 Software and DMB 5000 Leica® microscope, Leica Microsystems, Wetzlar, Germany). The taxonomic identification of nematodes was based on morphological and morphometric parameters established by Ash and Lv. The SADIE index was used to analyze the spatial patterns of the percentage of infected specimens from geographical coordinates and the percentage of infected A. fulica.

RESULTS

Achatina fulica was detected in anthropogenic environments, especially in those with great availability of food and shelter (82% of evaluated sites). Of the 90 sites analyzed, 73 (81.1%) had mollusks with nematode larvae, and, of these, 52 (71.2%)
were infected with *A. cantonensis*. Of the 540 mollusks, 204 (37.7%) had nematode larvae, of which, 117 (57.3%) were infected with *A. cantonensis* (21.6% of the total) (Table 1). The prevalence of *A. cantonensis* infection in *A. fulica* for each municipality and the absolute number of parasite loads per mollusk are shown in Table 2.

The results were negative for the presence of *A. costaricensis*. Spatial analysis showed that the percentage of *A. fulica* infected with *A. cantonensis* in Baixada Santista had a random distribution, characterized by the absence of areas with much higher or much smaller infection percentages within the region (I = 1.38; p = 0.0957).

Morphological and morphometric analyses revealed that the larvae showed filiform bodies, striated cuticles in the transverse direction with rounded anterior ends showing two well-developed structures in the form of buttons and another in the form of a rod, followed by a long esophagus (Figure 2). The results of the morphological analyses of second-stage larvae (L2) and L3 of *A. cantonensis* are shown in Table 3.

DISCUSSION

Several snails play roles as intermediate hosts for *A. cantonensis*. Among them, the giant African snail *A. fulica* is one of the most important due to its abundance and occupation in different ecosystems. In this study, among 540 *A. fulica* specimens analyzed, 204 (37.8%) were found to contain nematodes, a value similar to that obtained by Rocco et al., who reported a rate of 34.2%. In both studies, specimens were obtained in anthropic environments where snails probably lived with small rodents, which is critical for the maintenance of parasites in the environment.

Recovered *A. cantonensis* larvae presented two morphotypes that were visually classified by morphometry and morphology as larval stages 2 and 3 (L2 and L3). Although the detail of the tail ending in a fine tip is a typical feature of the species, it cannot be used alone as a precise taxonomic identification factor; however, L3 presented measures compatible with those obtained by Ash and Thiengo (Table 3).

Lv et al. found that, before the second molting, the main characteristics of L2 were similar to those of L3, as shown in Figure 2, which were two structures, similar to buttons and rods in shape. The founding of these two larval stages in the same snails is probably due to constant reinfections of the mollusk in the natural environment and to the method by which the analyzed material was obtained, in which the entire contents of the soft parts were processed.

Molecular analysis revealed the presence of *A. fulica* that were naturally infected with *A. cantonensis* in urban areas of the nine municipalities of the Baixada Santista region, with an infection rate of 21.7%. The variation of this rate is broad in several municipalities, such as São Gonçalo (35.4%) and Barra do Piraí (10.3%), both in the State of Rio de Janeiro and Joinville/SC (27.4%), China (13.4% and 28.4%) 49,51, Pernambuco (42%)11, and Japan (52.79%)42. The climatic characteristics of Baixada Santista are appropriate for the development of *A. fulica* and *A. cantonensis*. In fact, Ishii43 has observed that the L3 of *A. cantonensis* develop better at temperatures ranging from 20°C to 30°C. In addition to environmental factors such as temperature, variations in the infection rate can be influenced by biological cycle dynamics of the parasite in its hosts, by the population density of mollusks and rodents, and by biological characteristics.

These results indicate the need for more attention to this emerging parasite through awareness campaigns for local and medical communities, the development of a health surveillance system, improved health education, and the distribution of information about the management action adapted to each reality, since 82% of the analyzed wastelands had some type of garbage or rubble. Studies on the distribution of intermediate and paratenic hosts in areas near houses and the parasite-host compatibility should be investigated to improve understanding of transmission dynamics. In Brazil, there have been few
TABLE 1

Prevalence of nematode larvae and *Angiostrongylus cantonensis* in *Achatina fulica* mollusks in the nine municipalities comprising Baixada Santista, São Paulo, Brazil (n = 540; 60/municipality).

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Number of Achatina fulica naturally infected with nematode larvae (%)</th>
<th>Number of Achatina fulica infected with Angiostrongylus cantonensis among those with nematode larvae (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertioga</td>
<td>21/60 (35.0)</td>
<td>10/21 (47.6)</td>
</tr>
<tr>
<td>Cubatão</td>
<td>16/60 (26.7)</td>
<td>08/16 (50.0)</td>
</tr>
<tr>
<td>Guarujá</td>
<td>14/60 (23.3)</td>
<td>08/14 (57.1)</td>
</tr>
<tr>
<td>Itanhaém</td>
<td>28/60 (46.7)</td>
<td>15/28 (53.6)</td>
</tr>
<tr>
<td>Mongaguá</td>
<td>25/60 (41.7)</td>
<td>17/25 (68.0)</td>
</tr>
<tr>
<td>Peruíbe</td>
<td>34/60 (56.7)</td>
<td>15/34 (44.1)</td>
</tr>
<tr>
<td>Praia Grande</td>
<td>30/60 (50.0)</td>
<td>27/30 (90.0)</td>
</tr>
<tr>
<td>Santos</td>
<td>16/60 (26.7)</td>
<td>08/16 (50.0)</td>
</tr>
<tr>
<td>São Vicente</td>
<td>20/60 (33.0)</td>
<td>09/20 (45.0)</td>
</tr>
<tr>
<td>Total</td>
<td>204 (37.7)</td>
<td>117/204 (57.3)</td>
</tr>
</tbody>
</table>

TABLE 2

Prevalence of infection by *Angiostrongylus cantonensis* in *Achatina fulica* by each municipality and the absolute number of parasitic loads per snail.

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Total of snails</th>
<th>Number of positive snails (%)</th>
<th>Individual parasitic load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertioga</td>
<td>60</td>
<td>10 (16.7)</td>
<td>5; 7; 18; 36; 52; 98; 113; 148; 274; 9,723</td>
</tr>
<tr>
<td>Cubatão</td>
<td>60</td>
<td>8 (13.3)</td>
<td>4; 5; 17; 22; 30; 53; 82; 147</td>
</tr>
<tr>
<td>Guarujá</td>
<td>60</td>
<td>8 (13.3)</td>
<td>6; 11; 36; 187; 526; 703; 1,907; 2,407</td>
</tr>
<tr>
<td>Itanhaém</td>
<td>60</td>
<td>15 (25.0)</td>
<td>9; 19; 35; 36; 41; 42; 52; 61; 93; 109; 179; 215; 307; 601; 3,800</td>
</tr>
<tr>
<td>Mongaguá</td>
<td>60</td>
<td>17 (28.3)</td>
<td>6; 6; 7; 21; 21; 23; 30; 49; 62; 106; 110; 131; 349; 362; 448; 1,070; 3,213</td>
</tr>
<tr>
<td>Peruíbe</td>
<td>60</td>
<td>15 (25.0)</td>
<td>1; 3; 4; 4; 5; 8; 23; 27; 27; 66; 477; 937; 1,251; 1,302; 1,508</td>
</tr>
<tr>
<td>Praia Grande</td>
<td>60</td>
<td>27 (45.0)</td>
<td>1; 2; 3; 4; 11; 16; 19; 20; 28; 41; 45; 52; 54; 61; 74; 79; 85; 91; 126; 185; 203; 233; 388; 432; 568; 700; 1,717</td>
</tr>
<tr>
<td>Santos</td>
<td>60</td>
<td>8 (13.3)</td>
<td>1; 8; 12; 24; 281; 632; 1,328; 1,675</td>
</tr>
<tr>
<td>São Vicente</td>
<td>60</td>
<td>9 (15.0)</td>
<td>6; 14; 54; 61; 69; 160; 193; 285; 2,509</td>
</tr>
</tbody>
</table>
TABLE 3
Measurements (µm) of second- and third-stage larvae and tail characteristics of *Angiostrongylus cantonensis* retrieved from naturally infected *Achatina fulica*.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean ± standard deviation</td>
<td>variation</td>
</tr>
<tr>
<td>Body length</td>
<td>358.2 ± 27.8</td>
<td>299.5 - 399.2</td>
</tr>
<tr>
<td>Width</td>
<td>26.4 ± 2.6</td>
<td>21.9 - 34.5</td>
</tr>
<tr>
<td>Esophagus length</td>
<td>145.2 ± 22.2</td>
<td>107.4 - 236.0</td>
</tr>
<tr>
<td>Excretory pore</td>
<td>61.9 ± 7.6</td>
<td>53.9 - 89.9</td>
</tr>
<tr>
<td>Tail length</td>
<td>29.1 ± 3.4</td>
<td>21.2 - 39.7</td>
</tr>
<tr>
<td>Termination of tail</td>
<td>Tapered</td>
<td>Tapered</td>
</tr>
</tbody>
</table>

L2: second-stage larvae; L3: third-stage larvae.

Financial support
This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Process number: 2011/05893-8.

REFERENCES

15. Ciavarolo RMC, Pinto PLS, Mota DJG. Meningite cosinofílica e a infecção por *Angiostrongylus cantonensis*: um agravo emergente no Brasil. Vector Inf Tec Cient SUCEN. 2010;8:7-8.

44. Monte TCC, Gentile R, Garcia J, Mota E, Santos JN, Maldonado Júnior A. Brazilian *Angiostrongylus cantonensis* haplotypes, ac8
and ac9, have two different biological and morphological profiles. Mem Inst Oswaldo Cruz. 2014;109(8):1057-63.

