Short Communication

Time trend analysis of cervical high-risk human papillomavirus (HPV) in HIV-infected women in an urban cohort from Rio de Janeiro, Brazil: the rise of non-16/18 HPV

Mary C. Cambou a,b,*, José Eduardo Levi c, Jordan E. Lake a, Angela de Andrade d, Emilia M. Jali c, d, Fabio Russomano e, Mônica Derrico d, Valdirea G. Veloso d, Ruth K. Friedman d, Paula M. Luz d, Beatriz Grinsztejn d

aDepartment of Medicine, Division of Infectious Diseases, Program in Global Health, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue, CHS 37-121, Los Angeles, CA 90095, USA
bDepartment of Internal Medicine, Monterrey University Hospital of Albert Einstein College of Medicine, Bronx, New York, USA
cVirology Laboratory, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
dInstituto Nacional de Infectologia Evandro Chagas (IPEC), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
eInstituto Fernandes Figueira, Fiocruz, Rio de Janeiro, RJ, Brazil

ARTICLE INFO

Article history:
Received 23 July 2015
Received in revised form 4 October 2015
Accepted 22 October 2015

Corresponding Editor: Eskild Petersen, Aarhus, Denmark.

Keywords:
HIV
Women
Cervical HPV
High-risk HPV
HPV vaccine
Epidemiology

SUMMARY

Objectives: HIV-infected women are at increased risk of human papillomavirus (HPV) infection. Time trends in annual prevalences of cervical high-risk human papillomavirus (HR-HPV) genotypes among a non-vaccinated, HIV-infected female cohort in urban Brazil were assessed for the period 2006–2012.

Methods: Cervical specimens were collected for HPV genotyping yearly between January 2006 and December 2012 in a cross-sectional analysis of participants aged ≥18 years enrolled in the Women’s HIV Cohort at Fiocruz in Rio de Janeiro, Brazil. Age-adjusted generalized estimating equation models with an exchangeable matrix were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for annual HPV positivity (reference year: 2006).

Results: Among the 590 participants, the median age across all study years ranged from 35.5 to 40.0 years. The prevalence of any HR-HPV was ≥53% every year; prevalences of HR-HPV 16, 58, 59, and 68 were ≥24% in at least 1 year. The odds of HPV 16 and 68 decreased in 2012. HPV 58 prevalence followed a U-shape, beginning and ending at >20%. HPV 59 prevalence followed a linear trend, with increased odds in 2012 (OR 16.0, 95% CI 3.8–67.3; Bonferroni-adjusted p-value <0.01).

Conclusions: The prevalences of HR-HPV 58, 59, and 68 were high in this cohort. Given current HR-HPV vaccine coverage and availability, further investigations are needed to optimize vaccine recommendations for this population.

1. Introduction

HIV-infected women are at increased risk of human papillomavirus (HPV)-associated invasive cervical carcinoma (ICC), an AIDS-defining illness and vaccine-preventable disease. Despite routine screening in Brazil, the Instituto Nacional de Cáncer estimated 15,590 new ICC cases in 2014, with a 33% fatality rate. High-risk HPV (HR-HPV) genotypes 16 and 18 are associated with 70% of ICC cases worldwide, while the other 13 HR-HPV genotypes account for the remaining cases.

The HPV vaccine was proposed as a method to effectively reduce ICC prevalence at the population level. Three US Food and Drug Administration (FDA)-approved HR-HPV vaccines are currently available: the bivalent, quadrivalent, and nine-valent vaccines. The bivalent and quadrivalent vaccines protect against only HPV 16 and 18 of the HR-HPV genotypes, and the impact of these vaccines on non-16/18 HR-HPV genotypes remains unclear. 3-5 Non-16/18 HR-HPV genotypes are detected at higher rates in HIV-infected women, and it is uncertain whether a single sample traditionally used in cross-sectional studies accurately

* Corresponding author. Tel.: +1 310 854 9474.
E-mail address: mcambou@montefiore.org (M.C. Cambou).

http://dx.doi.org/10.1016/j.ijid.2015.10.017
1201-9712/© 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
captures HPV infection patterns in this population. A time trend analysis of annual cervical HR-HPV genotype prevalences from 2006 to 2012 among a non-vaccinated, HIV-positive female cohort in urban Brazil was performed to establish a pre-vaccine baseline.

2. Methods

2.1. Data collection

An annual, cross-sectional analysis of participants in the Evandro Chagas Clinical Research Institute (IPEC) Women’s HIV Cervical HPV Genotyping Study at Fiocruz (Rio de Janeiro, Brazil) was conducted. Cohort procedures have been published previously. Participants in the IPEC Women’s HIV Cohort (est. 1996) aged ≥18 years were invited to participate in the IPEC Women’s HIV Cervical HPV Genotyping Study. On-site gynecologists collected specimens for cytology and HPV genotyping yearly. Cervical HPV genotyping and cytology analysis procedures have been published previously. The IPEC Women’s HIV Cervical HPV Genotyping Study was approved by the Institutional Review Board of IPEC at Fiocruz, Rio de Janeiro, Brazil. Written informed consent was obtained from all participants prior to enrollment and initiation of study procedures.

2.2. Statistical analysis

A descriptive analysis of the following was performed yearly (2006–2012), using clinical data and cervical specimens closest to the July 1 marker of the mid-year: current age, CD4+ T-cell count, HIV-1 viral load, cervical cytology, cervical treatments, and prevalences of the 15 HR-HPV genotypes. The clinical data for

<table>
<thead>
<tr>
<th>N = 590</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>167</td>
<td>240</td>
<td>282</td>
<td>256</td>
<td>260</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>First appointment*</td>
<td>75 (74%)</td>
<td>55 (33%)</td>
<td>69 (29%)</td>
<td>105 (37%)</td>
<td>71 (28%)</td>
<td>59 (23%)</td>
<td>66 (29%)</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><30</td>
<td>26 (25%)</td>
<td>40 (24%)</td>
<td>53 (22%)</td>
<td>60 (21%)</td>
<td>51 (20%)</td>
<td>56 (22%)</td>
<td>39 (17%)</td>
</tr>
<tr>
<td>30–39</td>
<td>41 (40%)</td>
<td>61 (37%)</td>
<td>88 (37%)</td>
<td>110 (39%)</td>
<td>86 (34%)</td>
<td>84 (32%)</td>
<td>71 (32%)</td>
</tr>
<tr>
<td>40–49</td>
<td>28 (27%)</td>
<td>51 (31%)</td>
<td>72 (30%)</td>
<td>74 (26%)</td>
<td>80 (31%)</td>
<td>77 (30%)</td>
<td>74 (33%)</td>
</tr>
<tr>
<td>≥50</td>
<td>7 (7%)</td>
<td>135 (9%)</td>
<td>27 (11%)</td>
<td>38 (13%)</td>
<td>39 (15%)</td>
<td>42 (16%)</td>
<td>41 (18%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Current CD4 count, cells/mm³</td>
<td>55 (54%)</td>
<td>96 (57%)</td>
<td>156 (65%)</td>
<td>201 (71%)</td>
<td>178 (70%)</td>
<td>193 (74%)</td>
<td>172 (77%)</td>
</tr>
<tr>
<td><350</td>
<td>31 (30%)</td>
<td>58 (35%)</td>
<td>71 (30%)</td>
<td>59 (21%)</td>
<td>56 (22%)</td>
<td>46 (18%)</td>
<td>40 (18%)</td>
</tr>
<tr>
<td>≥350</td>
<td>16 (16%)</td>
<td>13 (8%)</td>
<td>13 (5%)</td>
<td>22 (8%)</td>
<td>22 (8%)</td>
<td>21 (8%)</td>
<td>13 (5%)</td>
</tr>
<tr>
<td>Current HIV viral load, copies/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detectable</td>
<td>45 (44%)</td>
<td>79 (47%)</td>
<td>98 (41%)</td>
<td>106 (38%)</td>
<td>79 (31%)</td>
<td>103 (40%)</td>
<td>83 (37%)</td>
</tr>
<tr>
<td>Undetectable</td>
<td>35 (34%)</td>
<td>60 (36%)</td>
<td>121 (50%)</td>
<td>136 (48%)</td>
<td>146 (57%)</td>
<td>129 (50%)</td>
<td>125 (56%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>22 (22%)</td>
<td>28 (17%)</td>
<td>21 (9%)</td>
<td>40 (14%)</td>
<td>31 (12%)</td>
<td>28 (10%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Cervical cytology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>77 (75%)</td>
<td>130 (78%)</td>
<td>190 (79%)</td>
<td>200 (71%)</td>
<td>193 (75%)</td>
<td>187 (72%)</td>
<td>179 (80%)</td>
</tr>
<tr>
<td>ASC-US</td>
<td>10 (10%)</td>
<td>12 (7%)</td>
<td>26 (11%)</td>
<td>29 (10%)</td>
<td>24 (9%)</td>
<td>28 (10%)</td>
<td>21 (9%)</td>
</tr>
<tr>
<td>AGC</td>
<td>0 (0%)</td>
<td>1 (<1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (<1%)</td>
<td>2 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>ASC-H</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>LSIL</td>
<td>15 (15%)</td>
<td>18 (11%)</td>
<td>21 (9%)</td>
<td>42 (15%)</td>
<td>34 (13%)</td>
<td>33 (13%)</td>
<td>23 (10%)</td>
</tr>
<tr>
<td>HSIL</td>
<td>0 (0%)</td>
<td>4 (2%)</td>
<td>2 (<1%)</td>
<td>8 (3%)</td>
<td>2 (1%)</td>
<td>7 (3%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (<1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>0 (0%)</td>
<td>2 (1%)</td>
<td>0 (0%)</td>
<td>3 (1%)</td>
<td>2 (1%)</td>
<td>3 (1%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Cervical treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (<1%)</td>
<td></td>
</tr>
<tr>
<td>Cone</td>
<td>1 (1%)</td>
<td>1 (<1%)</td>
<td>2 (<1%)</td>
<td>3 (1%)</td>
<td>3 (1%)</td>
<td>4 (2%)</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>Cauterization</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>4 (1%)</td>
<td>6 (2%)</td>
<td>5 (2%)</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>LEEP</td>
<td>4 (4%)</td>
<td>4 (2%)</td>
<td>5 (2%)</td>
<td>2 (<1%)</td>
<td>1 (<1%)</td>
<td>2 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Any HPV ≥1 HPV</td>
<td>72 (71%)</td>
<td>88 (53%)</td>
<td>135 (56%)</td>
<td>170 (60%)</td>
<td>180 (70%)</td>
<td>187 (72%)</td>
<td>159 (71%)</td>
</tr>
<tr>
<td>No HPV</td>
<td>30 (29%)</td>
<td>79 (47%)</td>
<td>105 (44%)</td>
<td>112 (40%)</td>
<td>76 (30%)</td>
<td>73 (28%)</td>
<td>66 (29%)</td>
</tr>
<tr>
<td>HR-HPV genotype prevalence (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>39</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>51</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>56</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>58</td>
<td>25</td>
<td>13</td>
<td>12</td>
<td>19</td>
<td>20</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>68</td>
<td>24</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

IPEC, Evandro Chagas Clinical Research Institute; HPV, human papillomavirus; IQR, interquartile range; ASC-US, Atypical squamous cells of undetermined significance; AGC, Atypical glandular cells; ASC-H, Atypical squamous cells; LSIL, Low-grade squamous intraepithelial lesion; HSIL, High-grade squamous intraepithelial lesion;LEEP, loop electrosurgical excision procedure; HR, high-risk.

* Ninety of the 590 women had their first appointment in 2005.

* Detectable defined as ≥400 copies/ml for 2006–2010, and ≥50 copies/ml for 2011–2012, based on assays used.
Table 2

<table>
<thead>
<tr>
<th>Year</th>
<th>HPV 16</th>
<th>HPV 18</th>
<th>HPV 58</th>
<th>HPV 68</th>
<th>OR (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>0.2 (0.1–0.3)</td>
<td>0.1 (0.0–0.3)</td>
<td>0.2 (0.1–0.3)</td>
<td>0.1 (0.0–0.3)</td>
<td><0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>2007</td>
<td>0.1 (0.0–0.2)</td>
<td>0.05 (0.0–0.1)</td>
<td>0.1 (0.0–0.2)</td>
<td>0.05 (0.0–0.1)</td>
<td><0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2008</td>
<td>0.15 (0.1–0.3)</td>
<td>0.1 (0.0–0.2)</td>
<td>0.15 (0.1–0.3)</td>
<td>0.1 (0.0–0.2)</td>
<td><0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2009</td>
<td>0.1 (0.0–0.2)</td>
<td>0.05 (0.0–0.1)</td>
<td>0.1 (0.0–0.2)</td>
<td>0.05 (0.0–0.1)</td>
<td><0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2010</td>
<td>0.15 (0.1–0.3)</td>
<td>0.1 (0.0–0.2)</td>
<td>0.15 (0.1–0.3)</td>
<td>0.1 (0.0–0.2)</td>
<td><0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2011</td>
<td>0.1 (0.0–0.2)</td>
<td>0.05 (0.0–0.1)</td>
<td>0.1 (0.0–0.2)</td>
<td>0.05 (0.0–0.1)</td>
<td><0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2012</td>
<td>0.15 (0.1–0.3)</td>
<td>0.1 (0.0–0.2)</td>
<td>0.15 (0.1–0.3)</td>
<td>0.1 (0.0–0.2)</td>
<td><0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Odds ratios (OR) and 95% confidence intervals (CI) for HPV positivity were estimated for each genotype using generalized estimating equation models with an exchangeable matrix to account for patient clustering. The year was the independent predictor, with 2006 as the reference category. The final model was adjusted for age as a continuous variable, given the inverse association between age and HPV positivity. Bonferroni-adjusted p-values were calculated to account for multiple comparisons. The statistical analysis was performed using R version 3.01, with statistical significance defined using a two-sided α < 0.05.

3. Results

Five hundred ninety-one women met the inclusion criteria, with one excluded for prior hysterectomy (final N = 590). Table 1 describes the characteristics and annual HR-HPV genotype prevalences by year (2006–2012). Table 2 provides ORs for HR-HPV positivity in those years. The prevalences of HPV 16, 58, 59, and 68 were ≥24% in at least 1 year, while the prevalence of HPV 18 never surpassed 13%. The odds of HPV 16 and 68 decreased significantly in 2012 compared to 2006, starting with prevalences of 25% and 24% for HPV 16 and 68, respectively, and ending with 12% and 10%. While the odds of HPV 58 decreased from 25% in 2006 to 12% in 2008, it rebounded to 21% by 2012. The odds of HPV 59 increased 16-fold between 2006 and 2012, with prevalence increasing from 2% to 24%.

4. Discussion

In this cohort of 590 HIV-positive women, the high prevalences of HPV 58 and 59 are concerning, given that HPV 58 is associated with pre-malignant cervical lesions among HIV-uninfected women in Brazil.9,10 and both genotypes are commonly identified in HIV-positive women worldwide.2 Additionally, neither the bivalent nor the quadrivalent vaccine cover HPV 58 and 59, leading to questions regarding their efficacy against non-16/18 genotypes.4,5

This study has both strengths and limitations. While it is unclear which factors influenced the fluctuating HPV prevalences, current clinical and cervical data remained relatively unchanged. HPV prevalences were analyzed over a 7-year period, compared to most studies utilizing a single time point. Additionally, the present study is one of the largest HPV/HIV co-infection studies in the Americas. However, the individual sample sizes for each HPV genotype are relatively small, and additional studies with larger sample sizes and longer follow-up are needed to further explore temporal trends in HR-HPV prevalences.

Continued monitoring of HR-HPV epidemiology and further investigations into the effects of HPV vaccination on non-16/18 HR-HPV genotypes are needed to optimize HPV vaccine recommendations for HIV-infected women in Brazil.

Acknowledgements

MCC, JEL, PML, and BG are supported by the South American Program in HIV Prevention Research (SAPHR; NIH R25 MH087222). BG and PML acknowledge funding from the Brazilian National Counsel of Technological and Scientific Development (CNPq) and the Research Funding Agency of the State of Rio de Janeiro (FAPERJ). This study was funded by the Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz and the Brazilian National STD/AIDS Program of the Brazilian Ministry of Health. JEL has served as a consultant to Gilead Sciences and GSK.
JEL is supported by the National Institutes of Health (K23AI110532). The authors would like to acknowledge the participants and Fiocruz staff who made the IPEC Women's HIV Cervical HPV Genotyping Study possible.

Ethical approval: The IPEC Women's HIV Cervical HPV Genotyping Study was approved by the Institutional Review Board of IPEC at Fiocruz, Rio de Janeiro, Brazil. Written informed consent was obtained from all participants prior to enrollment and initiation of study procedures.

Conflict of interest: The authors have no conflicts of interest to declare.

References