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ORIGINAL ARTICLE

Chloroquine and mefloquine resistance profiles are not related to the 
circumsporozoite protein (CSP) VK210 subtypes in field isolates of 
Plasmodium vivax from Manaus, Brazilian Amazon
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BACKGROUND The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed 
of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge 
in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. 

OBJECTIVES To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil 
and to profile these variants based on sensitivity to chloroquine and mefloquine. 

METHODS The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and 
mefloquine was determined by Deli-test. 

FINDINGS Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to 
the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different 
VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. 
However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. 

MAIN CONCLUSION The VK210 variant is the most frequently observed in the studied region and there is significant genetic 
variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to 
be related to the VK210 subtypes. 
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Despite remarkable progress in the control of ma-
laria, it still remains a public health problem in several 
countries where the disease is endemic. According to 
the latest World Health Organization (WHO) estimates, 
nearly half of the world’s population is at risk of malaria 
infection and 91 countries and territories have been clas-
sified as endemic. In 2017, 219 million cases and 435,000 
deaths from this disease were reported worldwide and 
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the victims were mainly children under the age of five 
years. Most of these cases (92%) and deaths (93%) oc-
curred in Africa, followed by Southeast Asia and the 
East Mediterranean Region.(1) Of the six Plasmodium 
species that infect humans, Plasmodium vivax is the 
most widespread, being responsible for around 3.4% of 
the estimated global cases. However, outside the Afri-
can continent, this proportion is over 36%. P. vivax is 
the most predominant parasite in the entire continent of 
America, representing approximately 74% of all malaria 
cases. In the East Mediterranean region, it represents 
over 31% of the cases and in East Asia, 37%.(1) In Brazil, 
P. vivax represented around 90% of the 194,000 malaria 
cases registered in 2017.(2) Although P. vivax infection 
is considered to be clinically milder than Plasmodium 
falciparum infection, there have been cases of severe 
malaria and death due to P. vivax infection in many en-
demic areas, including Brazil.(3) 

The P. vivax circumsporozoite surface protein (CSP), 
which is the most abundant polypeptide present on the 
surface of the sporozoite, is a well-characterised antigen 
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and one of the few vaccine candidates for P. vivax tested 
in clinical trials.(4) CSP is involved in the motility and 
invasion of the sporozoite into the hepatocytes and rep-
resents an important vaccine target, since anti-CSP an-
tibodies from naturally infected individuals or from vol-
unteers immunised with irradiated sporozoites are able 
to inhibit the invasion of hepatocytes by live sporozoites 
in vitro.(5,6) The csp gene encodes for a protein that is 
characterised by two highly conserved terminal nonre-
petitive regions (N- and C-terminal) flanking a highly 
immunogenic, central repetitive domain. The central 
repetitive region (CRR) of the CSP is composed of one 
of two possible nonapeptides that repeats in tandem, 
GDRA(A/D)GQPA and ANGA(G/D)(N/D)QPG, which 
are characteristic of theVK210 andVK247 CSP variants, 
respectively. These nonapeptide sequences are repeated 
nearly 20 times in their corresponding proteins. Besides 
these two variants, a third, known as P. vivax-like, has 
an 11-mer repetitive sequence, APGANQ(E/G)GGAA.
(7-10) However, there have been reports on polymorphisms 
related to the number of the residues in these CRR and 
several synonymous and non-synonymous point muta-
tions.(11) The CSP variants have been found at variable 
frequencies in different malaria endemic areas. Previous 
studies have used serological and molecular analysis to 
describe the occurrence of these three variants in both 
pure and mixed infections in Brazil.(6,12,13)

The distribution of these variants seems to be univer-
sal and the infections caused by the CSP variants seems 
to be associated with vector preference and susceptibil-
ity, symptom severity, clinical signs, humoral response 
patterns, parasite burden and cytokine balance.(10,14-16) 
Another important issue is that the response to the treat-
ment might possibly differ depending on the genotype of 
the parasite. A study performed by Kain et al.(17) suggest-
ed that the response to chloroquine varies depending on 
the P. vivax CSP variants as both single VK210 as well 
as VK210/VK247 mixed infections took longer to clear 
when compared to single VK247 infection in Thailand. 

The first reports of chloroquine-resistant P. vivax 
isolates were obtained from Papua New Guinea and 
Indonesia in 1989. In Brazil, the first reported case of 
chloroquine-resistant P. vivax was from a patient treated 
in Manaus, state of Amazonas, in the Brazilian Ama-
zon. Later, subsequent studies assessed the efficiency 
of standard supervised therapy or the in vitro profile of 
chloroquine-resistance showing failure rates of chloro-
quine treatment between 5 and 10%(18,19) with approxi-
mately 10% chloroquine-resistance profile seen in short-
term culture.(20) In vitro resistance of P. vivax isolates to 
mefloquine in Manaus has also been described to be at 
variable frequencies.(20) 

In the present study, we characterised the CSP vari-
ants in the P. vivax isolates from individuals residing in 
malaria-endemic area of the Brazilian Amazon and stud-
ied the sensitivity profiles of these parasites to chloro-
quine and mefloquine using short-term in vitro cultures. 

MATERIALS AND METHODS

Study site and isolates – This study was carried out 
in the city of Manaus. A total of 95 P. vivax isolates 

were collected from patients who sought health care at 
Fundação de Medicina Tropical Doutor Heitor Vieira 
Dourado (FMT-HVD) between 2004 and 2007, as pre-
viously described.(20)

We obtained written informed consent from all the 
donors and venous blood samples were drawn in Vacu-
tainer® (Becton Dickinson, Oxnard, CA, USA) ethylene-
diamine tetraacetic acid (EDTA) tubes. For determina-
tion of drug sensitivity, the tubes containing the blood 
samples were maintained at 4ºC before the in vitro cul-
ture was initiated.

For molecular analysis, the tubes were centrifuged 
at 350 g for 10 min to remove the plasma and the pel-
let was stored at -20ºC. The pellets, containing the pe-
ripheral blood cells, were mixed with equal volumes of a 
cryopreservation solution (0.9% NaCl/4.2% sorbitol/20% 
glycerol) and were stored in liquid nitrogen until fur-
ther use. Thin and thick blood smears were examined 
to identify the malaria parasites and determine presence 
of parasitaemia by two technicians who were experts in 
malaria microscopy from FMT-HVD and from the Labo-
ratório de Pesquisa em Malária (Laboratory of Malaria 
Research) [Fundação Oswaldo Cruz (Fiocruz)], which 
is the headquarters of the Centro de Pesquisa e Treina-
mento em Malária of the Secretaria de Vigilância em 
Saúde (Center for Malaria Research and Training, De-
partment of Health Surveillance), a reference centre for 
malaria diagnosis in the extra-Amazonian Region for the 
Brazilian Ministry of Health. Thick blood smears from 
all of the subjects were stained with Giemsa and a total of 
200 microscopic fields were examined under a 1,000-fold 
magnification. Thin blood smears of the positive samples 
were examined for species identification. The parasite 
density was evaluated by counting the parasites in a pre-
determined number of white blood cells in the thick blood 
films, and the number of blood parasites per millilitre 
was calculated. To increase the sensitivity of the parasite 
detection, molecular analyses using specific primers for 
genus (Plasmodium sp.) and species (P. falciparum and P. 
vivax) were performed for all of the samples. 

All the patients enrolled in this study complied with 
the following criteria: (i) they presented symptoms; (ii) 
they were infected with only P. vivax; (iii) they did not 
use any chemoprophylaxis or any antimalarial drugs as 
self-treatment; (iv) they were 12 years of age or older; 
(v) women were not pregnant or breast feeding; and, (vi) 
blood collection was performed on the day of diagnosis 
before malaria treatment. After the malaria diagnosis 
and blood sample collection, the patients were imme-
diately treated according to the Brazilian Ministry of 
Health standards for malaria therapy.

Ethics statement – The study protocol was reviewed 
and approved by the Fiocruz Ethical Committee (proto-
col 221/03), which included obtaining the patients’ writ-
ten consents in order to use their blood samples for re-
search. Written informed consent was obtained from all 
the adult donors or from the parents of the donors in the 
case of minors. All the procedures adopted in this study 
fully complied with the specific federal permits issued 
by the Brazilian Ministry of Health.
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Characterisation of the CSP variants – The CSP 
variants were determined by PCR-sequencing. DNA 
was extracted from the blood samples using the QIAamp 
DNA blood midi kit (Qiagen, Germantown, MD, USA) 
according to manufacturer instructions and stored at 
-20ºC until amplification. The csp gene of each sample 
was amplified by two independent, conventional poly-
merase chain reaction (PCR) methods using either of 
the following two pairs of primers: AL60 5’-GTCG-
GAATTCATGAAGAACTTCATTCTC-3’ (forward) 
and AL61 5’-CAGCGGATCCTTAATTGAATAAT-
GCTAGG-3’ (reverse), or PVCSP1 5’-AGGCAGAG-
GACTTGGTGAGA-3’ (forward) and PVCSP2 5’-CCA-
CAGGTTACACTGCATGG-3’ (reverse) (Genone 
Biotechnologies, Rio de Janeiro, RJ, Brazil). All the 
PCR amplifications were carried out in a 50 μL reac-
tion mixture containing 8 μL of genomic DNA, 5 μL of 
10X PCR buffer (20 mM Tris-HCl pH 8.4, 50 mMKCl), 
1.5 mM MgCl2, 0.2 mM of each dNTP, 0.2 μM of each 
primer and 2.5U of Taq polymerase (Invitrogen, Cali-
fornia, CA, EUA) kit according to the manufacturer’s. 
The amplifications were performed in a GeneAmp PCR 
system 9700 thermal cycler (Applied Biosystem, Fos-
ter City, CA, USA) using the following steps: an initial 
cycle of 94ºC for 10 min followed by 30 cycles of 94ºC 
for 1 min, 48ºC for 1 min and 72ºC for 1 min, with a 
final extension at 72ºC for 10 min for the pair of prim-
ers AL60/AL61 and an initial cycle of 94ºC for 10 min 
followed by 30 cycles of 94ºC for 1 min, 60ºC for 1 min 
and 72ºC for 1 min, with a final extension at 72ºC for 10 
min, for the pair of primers PVCSP1/PVCSP2. In all of 
the reactions, two negative controls (one without DNA 
and the other with DNA extracted from an in vitro cul-
ture of P. falciparum PSS1 strain) and a positive control 
(P. vivax-infected sample) were used. Further, 5 μL of 
the PCR product was electrophoresed at 95V for 90 min 
along with 0.5 µg/mL 100 base pairs (bp) DNA molecu-
lar weight marker (ThermoFisher Scientific, Waltham, 
MA, USA) in 2% agarose gel (Sigma-Aldrich, St. Louis, 
MI, USA) in 1x tris-acetate-EDTA (TAE) buffer (0.04 M 
TAE, 1 mM EDTA), and the gel was stained by ethidium 
bromide (EtBr). The target DNA was visualised and the 
images were captured using an ultraviolet transillumina-
tor (Multi-Doc IT Digital Imaging System UVP). The 
positive samples were electrophoresed in 2% agarose 
low melting point gel stained with EtBr. Then, the PCR 
fragments were purified using the Wizard SV Gel and 
PCR Clean-UP System (Thermo Fisher) kit according 
to the manufacturer’s protocol and quantified using the 
Qubit dsDNA HG Assay kit (Invitrogen).

DNA sequencing and polymorphism analysis – The 
specificity of the assay was confirmed by sequencing 
the PCR products from all of the positive samples using 
a Big Dye Terminator Ready Reaction version 3.1 (Ther-
mo Fisher), following the manufacturer’s instructions. 
The products that were amplified with the pair of prim-
ers AL60 and AL61 were sequenced with primers AL60, 
AL61, PVCSP1 and PVCSP2. The PCR products ampli-
fied with the primer pair, PVCSP1 and PVCSP2 were se-
quenced with PVCSP1 and PVCSP2. The DNA sequenc-

ing was carried out on the 3730xl DNA analyser (Thermo 
Fisher) and the results were analysed using the sequence 
alignment software from DNASTAR (Lasergen, Madi-
son, WI, USA) to identify polymorphism relative to the 
Belém strain reference sequence from NCBI (EU401923).

Amino acid sequences were aligned by using Clust-
alW and the phylogenetic tree was reconstructed by 
the neighbour-joining (NJ) algorithm using the Jones-
Taylor-Thorton (JTT) amino acid substitution model, as 
implemented in the MEGA v6 program. The reliability 
of the obtained tree was calculated by the bootstrap test 
based on 100 resamplings.

Determination of chloroquine and mefloquine sen-
sitivity – We determined the sensitivity of P. vivax iso-
lates towards chloroquine sulphate and mefloquine 
hydrochloride (Sigma-Aldrich), which were aliquoted 
in pre-dosed tubes (15 mg/tube). Chloroquine was dis-
solved in 3 mL of 100% ethanol and 7 mL of Roswell 
Park Memorial Institute (RPMI)-1640 medium (Gibco, 
Invitrogen Life Technologies, California, CA, USA) and 
mefloquine was dissolved in 10 mL of 100% methanol. 
From the stock solution, another solution was prepared 
for each drug at final concentrations of 600 ng/mL for 
chloroquine and 300 ng/mL for mefloquine, in a 3:1 mix 
(vol/vol) of RPMI-1640 medium and Waymouth Me-
dium (Sigma-Aldrich). Then, 100 µL of each dilution 
was added into all the wells in column 1 of the 96-well 
tissue culture plates (Falcon, Corning, NY, USA), and 
nine subsequent two-fold dilutions were added into the 
wells in columns 2 to 9. Wells in columns 10 to 12 were 
filled with 50 μL of complete culture medium (culture 
control wells). The concentration of each of the antima-
larial drug was tested in quadruplicate.

Samples with parasitaemia ranging from 0.1 to 1% 
were used directly, whereas samples with parasitaemia 
higher than 1% were diluted with uninfected O-positive-
group erythrocytes to obtain a final parasite density of 
0.1 to 1%. Blood samples were washed twice with a so-
lution of RPMI-1640 medium and then resuspended in 
RPMI-Waymouth (Sigma-Aldrich). Finally, 200 μL of 
this suspension was added into each well in the antima-
larial pre-dosed plates at a 1.2% final haematocrit. The 
plates were incubated for 48 h at 37ºC in a CO2 incubator 
(5% CO2 in air) and then frozen and kept at -20ºC. Be-
fore enzyme linked immunosorbent assay (ELISA), the 
plates were subjected to three consecutive freeze-thaw 
cyclesin order to lyse the red blood cells.

ELISA – The success of the drug sensitivity assay 
and the appropriate volume of the haemolysed culture 
were previously determined for each clinical isolate by 
a preliminary LDH ELISA as a pre-test. To determine 
which dilution of the haemolysed culture had to be used 
in the Deli-test, four serial dilutions (1:50, 1:25, 1:12.5 
and 1:6.25) of the culture control wells (no drug) of each 
isolate were tested in a preliminary LDH ELISA. The 
dilutions were selected based on the wells that displayed 
optical density (OD) readings ranging from 1 to 2.

ELISA plate (Nunc, Maxisorp, Denmark) wells were 
coated with 100 μL of monoclonal antibody (MAb) 
against P. vivax (11D) LDH at 1 μg/mL in phosphate-
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buffered saline (PBS) (pH 7.4). The plates were incu-
bated overnight at 4ºC, washed with PBS containing 1% 
bovine serum albumin (BSA) (fraction V, Boehringer-
Mannheim, Mannheim, Baden-Wurttemberg, Germany) 
(PBS-BSA) and then incubated with 300 μL of PBS-
BSA for 4 h at room temperature (RT). The plates were 
maintained at 4°C until further use.

Subsequently, the appropriate volume of the haemo-
lysed culture was transferred to the wells of the ELISA 
plate with PBS-BSA to a final volume of 100 μL, incu-
bated for 1 h at 37ºC, and then washed with PBS-BSA. 
After the addition of 100 μL per well of a biotinylated 
MAb against pan-Plasmodium LDH (19G7), the plates 
were incubated for 1 h at 37ºC. After washing, a third 
incubation was done for 30 min at RT with 100 μL of a 
streptavidin horseradish peroxidase solution followed by 
a final washing step. The enzyme activity was revealed 
after 5 min of incubation at RT with 100 μL of tetra-
methylbenzidine (TMB). The reaction was stopped with 
1 M of phosphoric acid and the absorbance was read at 
450 nm in a spectrophotometer (Spectramax 250, Mo-
lecular Devices, San José, CA, USA).

The concentration-response data were analysed 
using non-linear regression function to determine the 
50% inhibitory concentration of parasite growth (IC50), 
defined as the concentration of the drug required to in-
hibit 50% of the production of lactate dehydrogenase 
(LDH) as determined by OD values from sample test 
wells compared to those obtained from drug-free con-
trol wells. The IC50 threshold values for resistance to 
chloroquine and mefloquine were 100 nM and 30 nM, 
respectively, and these values were consistent with pre-
viously described results.(20)

Statistical analysis – The data was stored in the Fox-
plus® (Borland International Inc, Perrysburg, OH, USA) 
data bank software. GraphPad Instat and GraphPad Prism 
(GraphPad Software Inc, San Diego, CA, USA) statistical 
software programs were used for data analysis. Student’s 
t test was used to analyse the differences in IC50 mean val-
ues, and the chi-square test was applied to compare the 
prevalence of isolates with a resistance profile.

RESULTS

Characterisation of P. vivax CSP variants –  Among 
the 95 isolates analysed, alleles of five different sizes – 
1135, 1108, 1081, 1054 and 1027 bp – were amplified with 
the AL60/AL61 primers and alleles of sizes 786, 759, 
732, 705 and 678 bp were amplified with PVCSP1/PVC-
SP2. The most common allele size was 1135/786 bp, cor-
responding to the 20 repeat units observed in 44 isolates 
(46.3%). The allele sizes of 1108/759, 1081/732, 1054/705 
and 1027/678 bp corresponding to the 19, 18, 17 and 16 
repeat units were observed in 19 (20%), 26 (27.4%), 2 
(2.1%) and 4 (4.2%) isolates, respectively. All of the 
analysed isolates presented only one type of fragment 
(single infection). In addition to these samples, P. falci-
parum specimens were also tested, but showed nega-
tive PCR results with AL60/AL61 or PVCSP1/PVCSP2 
primers. Therefore, the 95 samples from individuals in-
fected with P. vivax, amplified by PCR, were subjected 
to sequencing reactions to screen the possible nucleotide 
polymorphisms of the gene encoding the PvCSP.

Using PCR-sequencing, we identified that all 95 
samples from the isolates obtained in Manaus were of the 
VK210 variant. However, a great genetic diversity in CRR 
was observed, resulting in 10 different VK210 subtypes, 

Fig. 1: nucleotide sequence alignment for the central repetitive region (CRR) region of the csp gene found in Plasmodium vivax isolates with 
VK210 variant from Brazil. The numbers on the right represent the numbers of nonapeptides presented by the CRR. The letters in blue encode 
the same amino acid; letters in red encode different amino acid.
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named from VK210a to VK210j (Fig. 1). These VK210 
subtypes differed in numbers, varying from 16 to 20, and in 
the arrangements of five different nonapeptide sequences 
presented in the CRR: GDRADGQPA, GDRAAGQPA, 
GNRADGQPA, GDRAAGQAA and GNGAGGQAA 
(Fig. 2). Fig. 3 shows the phylogenetic relationship of the 
10 VK210 subtypes from the isolated from Manaus based 
on the nucleotide sequence of the CRR.

The most frequent subtypes were the VK210a and 
VK210b found in 38 (40%) and 19 (20%) of the P. vivax 
isolates studied, respectively. The subtypes VK210i, 
VK210g and VK210j were poorly represented as they 
were present in only one (1%), two (2.1%) and two (2.1%) 
of the samples, respectively (Table).

Sensitivity profile of chloroquine and mefloquine 
resistance – Overall, the IC50 values could be deter-
mined in most of the P. vivax isolates: 59/95 (62%). For 
chloroquine, the frequency of P. vivax isolates with IC50 
above the threshold of 100 nM was 11.8% (7/59) and the 
geometric mean for the IC50 was 53.9 nM (59.3 ± 105.5 
nM). For mefloquine, the frequency of isolates with a 
profile of resistance (IC50 > 30 nM) was 23.8% (14/59). 
The geometric mean IC50 for mefloquine was 31.8 nM 
(31.8 ± 48 nM) (Fig. 4). 

No difference was observed in the frequency of the 
resistant isolates and in the IC50 mean for chloroquine 
or mefloquine based on the VK210 subtypes (Fig. 5). 
Similarly, there was no observable difference in the 
frequency of resistant isolates and in the IC50 mean for 
chloroquine or mefloquine when the isolates were sepa-

rated temporally or divided into two groups according 
to their phylogenetic relationship (Group A compris-
es VK210a, VK210f, VK210g, VK210e and VK210i 
and Group B comprises VK210b, VK210d, VK210c, 
VK210h and VK210j) (Fig. 3).

DISCUSSION

In the present study, we identified the CSP variants in 
P. vivax isolates from individuals residing in Manaus and 
showed the difference in the sensitivity profiles of these 
specimens towards chloroquine or mefloquine. Among 
the 95 P. vivax isolates analysed, five different allele sizes 
were amplified by PCR, although the sequencing results 
showed that all the studied isolates were of the VK210 
variant, with no occurrence of VK247 or P. vivax-like. 
Similarly, a study performed in a low endemicity area in 
the state of Acre, Amazon Basin of Brazil, also reported 
only the VK210 variant in the sympatric P. vivax iso-
lates.(21) These findings are consistent with results from 
previous studies reporting that the VK210 variant is the 
most frequent in malaria-endemic areas of the Brazilian 
Amazon.(12,13,22) In fact, Machado and Póvoa(12) suggested 
that VK210 is the best-adapted variant in Brazil as well 
as the world, as this variant has also been reported to be 
predominant in cases from Afghanistan, Iran, Azerbaijan, 
India, Thailand and Guiana.

However, we did not observe the VK247 variant in 
our study. This indicate that perhaps the VK247 subtype 
is not yet fully adapted in all Brazilian malaria-endemic 
areas, unlike earlier reports from endemic areas in Co-
lombia where the frequency of the VK247 variant was 

Fig. 2: amino acid sequence alignment for the central repetitive region (CRR) peptide encoded by the csp gene in the Plasmodium vivax isolates 
from Brazil with the VK210 variant. A: the isolates obtained from individuals residing in Manaus (state of Amazonas) were aligned with the 
Belém reference strain (GenBank: EU401923). Dots represent identical residues and dashes represent deletions. The sequences highlighted in 
gray are the units of CRR; B: schematic representation of the CRR. Different colours represent each of the six nonapeptide repeats found in 
VK210 subtypes.
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seen to be higher.(23) Alternatively, it might also be due 
to the differential susceptibility of Anopheles mosqui-
toes to infection with the P. vivax isolates(15) as previous 
studies have reported differences in the infectivity of the 
anophelines to the variants, indicating that Anopheles 
darlingi were more susceptible to infection by VK210.
(24) We also cannot exclude the possibility that the lack of 
detection of the VK247 variant might be due to the low 
number of samples sequenced.

Individuals residing in malaria-endemic areas can 
be infected with genetically distinct parasite genotypes, 
which may result from either multiple infectious mos-
quito bites or bites from mosquitoes infected with multi-
ple parasite genotypes. The complexity of the infections 
may also vary considerably based on the differences in 
the epidemiological scenarios. In low transmission ar-
eas, individuals may have infections with a single or a 
few parasite genotypes, while in high transmissions ar-
eas, individuals may have infections with more than 10 
genotypes.(25) In the present study, no mixed infection 
(VK210/VK247 or VK210/P. vivax-like) was observed 
in any of the analysed samples, which might reflect the 
low endemicity of the studied area as the frequency of 
mixed-clone infections has been correlated with the in-
tensity of transmission. Competition of different strains 
for limited resources within a host during their life cy-
cles may be important for survival, leading not only to 
higher transmissibility, but also an increase of the viru-
lence and emergence of drug resistance.(26,27)

Insertions and deletions in CRR, resulting from ei-
ther sexual recombination during meiosis or intrahelical 
strand-slippage events during mitotic DNA replication,(28) 
can generate novel CSP variants. Although only the 
VK210 variant has been found in the studied area, high 
genetic diversity in CRR was observed, resulting in 10 
different VK210 subtypes, with the VK210a and VK210b 
subtypes being the most predominant ones. These VK210 
subtypes varied in numbers and in the arrangements of 
five different nonapeptide sequences presented in the 
CRR. The nonapeptide sequences GDRADGQPA and 

GDRAAGQPA have also been observed in the P. vivax 
isolates from Sri Lanka, Azerbaijan, South Korea, Iran, 
Brazil, China, Philippines, Solomon Islands and Gabon; 
the nonapeptide GNGAGGQAA was found in P. vivax 
isolates from Sri Lanka, South Korea, Iran, Brazil, China, 
Philippines and Solomon Islands while the nonapeptides 
GNRADGQPA and GDRAAGQAA were described only 
in isolates from Brazil.(21,29) 

The infection due to these CSP variants seems to in-
fluence factors such as symptom severity, humoral re-
sponse patterns, parasite burden and cytokine balance.
(10,17) However, the influence of these variants on drug 
response remains unclear. P vivax isolates that are resis-
tant to antimalarial drugs have been reported in several 
countries, including Brazil.(20) In a study conducted in 
Thailand, Kain et al.(17) suggested that the response to-

Fig. 3: neighbour-joining tree of the Plasmodium vivax isolates ob-
tained from individuals residing in Manaus (state of Amazonas) based 
on the nucleotide sequence of the circumsporozoite protein central re-
petitive region (CRR). The bootstrap values are shown on the branch-
es and indicate the number of times out of 100 resamplings.

TABLE
Frequency of VK210 subtypes in Plasmodium vivax isolates 

obtained from individuals living in Manaus,  
state of Amazonas, Brazilian Amazon

VK210 subtype n %

VK210a 38 40
VK210b 19 20
VK210c 11 11,6
VK210d 7 7,4
VK210e 4 4,2
VK210f 7 7,4
VK210g 2 2,1
VK210h 4 4,2
VK210i 1 1
VK210j 2 2,1

Total 95 100

n: number of isolates presenting the corresponding VK210 subtype.

Fig. 4: distribution of 50% inhibitory concentration (IC50) values in 
Plasmodium vivax isolates for chloroquine and mefloquine using 
Deli-test. The values correspond to individual IC50 values. Lines 
represent geometric mean. The dotted line represents the resistance 
threshold for chloroquine (100 nM) and for mefloquine (30 nM).
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wards chloroquine varies depending on the type of P. 
vivax as the VK210 variant and mixed infection VK210/
VK247 took longer to clear, while VK247 tended to have 
a shorter duration. Later, a study conducted by Machado 
et al.(16) reported the correlation between the P. vivax 
variant and the response to chloroquine. Thus, we char-
acterised the P. vivax CSP variants and subtypes in the 
isolates with different sensitivity profiles towards chlo-
roquine and mefloquine, as determined using the colori-
metric Deli test to evaluate whether the CSP variant can 
mark a P. vivax population with a distinct antimalarial 
resistance profile.

Overall, the IC50 values could be determined in 62% 
of P. vivax isolates collected in Manaus. P. vivax iso-
lates showed a significant proportion of isolates with 
reduced sensitivity to chloroquine and mefloquine, 11.8 
and 23.8%, respectively. The usefulness of the DELI test 
to generate results that can influence malaria control and 
public health policies has been demonstrated in a previ-
ous publication.(20) It is important to note that the in vivo 
outcome depends on several factors that cannot be eval-
uated in vitro, including the level of innate and acquired 
immunity. However, in vitro assays act as a preliminary 
warning system indicating a trend as the in vitro resis-
tance may be indicative of clinical resistance.(20)

Temporal variation in the habitat of the pathogen may 
directly or indirectly aid in the selection of the genetic di-
versity,(30) and the genetic diversity of the csp gene has 
been associated with response to treatment as based on 
the infecting P. vivax CSP variant, there can be a differ-
ence in response towards chloroquine.(14,16) In this study, 
we investigated if the sensitivity towards chloroquine and 
mefloquine was associated with the VK210 subtypes, 
separated temporally (older or more recent isolates) or 
phylogenetically (individual or separated by groups). We 
did not observe any difference in the frequency of the re-
sistant isolates and in the IC50 mean for chloroquine or 
mefloquine, according to VK210 subtypes. Similarly, we 
also did not observe any difference in the frequency of the 
resistant isolates and in the IC50 mean for chloroquine or 
mefloquine when the isolates were grouped temporally or 
separated by group. The data presented here indicated that 
the VK210 subtypes does not mark a P. vivax population 
with different profiles of sensitivity to antimalarial drugs.

A limiting factor of our study and data is the small 
number of samples used to determine the IC50 and, con-
sequently, the small number of isolates profiled for de-
creased sensitivity and/or antimalarial resistance, which 
could explain VK247 and P. vivax-like variants not being 
detected in the studied samples.

Fig. 5: distribution of 50% inhibitory concentration (IC50) values in Plasmodium vivax isolates for chloroquine and mefloquine using Deli-test 
according to VK210 subtypes. The values correspond to individual IC50 values. Lines represent the geometric mean. The continuous line repre-
sents the resistance threshold for chloroquine (100 nM) and mefloquine (30 nM)
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The data reported here indicated that the VK210 
variant is the most frequent subtype in this malaria-
endemic area of the Brazilian Amazon and that there is 
great genetic variability in CRR of the P. vivax circum-
sporozoite protein. However, VK210 subtypes might not 
be a suitable marker for the different sensitivity profile 
of the P. vivax populations towards antimalarial drugs. 
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