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It is well-established that infectious stress activates the hypothalamus–pituitary–adrenal

axis leading to the production of pituitary adrenocorticotropin (ACTH) and adrenal

glucocorticoids (GCs). Usually, GC synthesis is mediated by protein kinase A (PKA)

signaling pathway triggered by ACTH. We previously demonstrated that acute murine

Chagas disease courses with a marked increase of GC, with some data suggesting

that GC synthesis may be ACTH-dissociated in the late phase of this parasitic infection.

Alternative pathways of GC synthesis have been reported in sepsis or mental diseases,

in which interleukin (IL)-1β, prostaglandin E2 (PGE2), and/or cAMP-activated guanine

nucleotide exchange factor 2 (EPAC2) are likely to play a role in this regard. Accordingly,

we have searched for the existence of an ACTH-independent pathway in an experimental

model of a major parasitic disease like Chagas disease, in addition to characterizing

potential alternative pathways of GC synthesis. To this end, C57BL/6 male mice were

infected with T. cruzi (Tc), and evaluated throughout the acute phase for several

parameters, including the kinetic of GC and ACTH release, the adrenal level of MC2R

(ACTH receptor) expression, the p-PKA/PKA ratio as ACTH-dependent mechanism of

signal transduction, as well as adrenal expression of IL-1β and its receptor, EPAC2 and

PGE2 synthase. Our results reveal the existence of two phases involved in GC synthesis

during Tc infection in mice, an initial one dealing with the well-known ACTH-dependent

pathway, followed by a further ACTH-hyporesponsive phase. Furthermore, inflamed

adrenal microenvironment may tune the production of intracellular mediators that also

operate upon GC synthesis, like PGE2 synthase and EPAC2, as emerging driving forces

for GC production in the advanced course of Tc infection. In essence, GC production

seems to be associated with a biphasic action of PGE2, suggesting that the effect of

PGE2/cAMP in the ACTH-independent second phase may be mediated by EPAC2.
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INTRODUCTION

The hypothalamus–pituitary–adrenal (HPA) axis is activated
in diverse stressful situations, like pathological and metabolic
disorders (1) or infectious diseases (2, 3), to preserve homeostasis
(4) by controlling the availability of glucocorticoid (GC)
hormones: corticosterone (CT) in rodents and cortisol in
humans (4–6). Adrenocorticotropic hormone (ACTH) is the
main stimulus for GC synthesis and release, acting through the
melanocortin 2 receptor (MC2R). MC2R activation induces the
synthesis of the second messenger cAMP, which, in a protein
kinase A (PKA)-dependent fashion, induces the expression of
many steroidogenic enzymes transforming cholesterol to GC (7).

Since pituitary disorders lead to secondary adrenal
insufficiency (8), elevated GC concentrations have been
traditionally ascribed as being due to a pituitary-stimulated
increase of ACTH. Nevertheless, in the last decades, it became
evident that alternative pathways of GC steroidogenesis may also
occur in the context of some pathological situations. Patients
with sepsis (9–12), or undergoing surgery (13, 14), as well as
presenting malignant diseases or depression (15) often show
in plasma-augmented GC amounts without changes in ACTH
levels (16, 17). The dissociation between the ACTH and GC
levels during critical illnesses may be envisioned as an adaptive
phenomenon addressed to preserve elevated GC levels to
respond as appropriately as possible to the stress-related needs.
One possible alternative pathway involves the production of
cAMP (in an ACTH-independent fashion), and the so-called
cAMP-activated guanine nucleotide exchange factor 2 (EPAC2)
(18–21), whose positive effects upon the steroideogenic pathway
are exerted through mechanisms not yet fully described. Diverse
mediators may be involved in the cAMP rise in the absence
of ACTH, like prostaglandins (22, 23), and indirectly, some
inflammatory cytokines (24, 25).

Trypanosoma cruzi (Tc) is a protozoan parasite causing
Chagas disease, a main parasitic disease in Latin America. Chagas
disease is currently spreading in a non-vector way throughout
the world due to migratory flows. The parasite usually elicits an
intense systemic response able to damage essential organs, i.e.,
heart and digestive tract (26, 27), causing disability. Moreover,
oral breaks course with high lethality (28, 29). We previously
demonstrated that Tc acute infection in C57BL/6 mice induces a
strong release of GC, which is critical to mice survival (30, 31).
Further studies developed in Tc-infected mice suggested that
an ACTH-GC dissociation phenomenon may also occur in this
protozoan infection. In fact, findings recorded from a single time
point along the course of the acute infection showed that higher
circulating levels of GC coexisted with slight ACTH amounts
(32, 33), raising the view of a GC-driven negative feedback as
playing a role in this regard.

Given this background, we searched for the occurrence of an
ACTH-independent pathway in an experimental model of acute
Chagas disease in addition to characterizing potential alternative
pathways of GCs synthesis. Here, we evaluated throughout
infection the kinetics of ACTH and GC production and
intracellular pathways involved in GC synthesis in the adrenal
gland. To discriminate ACTH-dependent from -independent

pathways, Tc-infected mice were also assessed for MC2R
expression and the PKA-pathway activation as a correlate of
the ACTH-pathway activation, with the adrenal expression of
interleukin (IL)-1β and its receptor (IL-1R), prostaglandin E2
(PGE2) synthase, and EPAC2 being studied as factors involved
in the ACTH-independent pathway.

MATERIALS AND METHODS

Mice and Experimental Infection
C57BL/6 male mice, aged 6–8 weeks, were obtained from
the Animal Facilities of Faculty of Medical Sciences, National
University of Rosario (FCM-UNR). Trypomastigotes of the
Tulahuen strain of Tc, corresponding to Tc lineage VI (34)
were used. Mice were infected with 200 viable trypomastigotes
subcutaneously. Parasitemia and the survival time were recorded
following infection, to monitor the systemic repercussion of the
acute disease, as previously reported (32).

Plasma ACTH and CT
Assessment of basal and infection-induced hormones was
performed as previously reported (30, 32). Mice were housed
individually 1 week before the beginning of the experiments and
kept single-caged throughout the infection in temperature, and
light-controlled rooms (light cycle from 7:00 a.m. to 7:00 p.m.).
Plasma samples for hormone measurements were obtained from
the tip of the tail between 8:00 and 10:00 a.m. (30, 32). Following
that, blood was taken by cardiac puncture and adrenal glands
were removed for other approaches detailed below. Plasma CT
(IBL International, Hamburg, Germany) and ACTH levels (MD
Bioproducts, Zurich, Switzerland) were determined by ELISA.

Plasma and Intra-adrenal Cytokine
Measurements
Plasma and adrenal glands were obtained from control and Tc-
infected animals throughout acute infection. Plasma IL-1β was
measured by specific two-site enzyme-linked immunosorbent
assay (ELISA) using an ELISA kit according to themanufacturer’s
specifications (Pharmingen, USA). Plasma TNF-α, IFN-γ, and
IL-6 were measured using a murine BD Cytometric Bead Array
(BD Biosciences, USA). Intra-adrenal IL-1β mRNA levels were
assessed by RT-qPCR, as below described. All samples were
assayed in duplicate.

Immunoblot Assays
Adrenal glands were homogenized in 4 volumes of 300
mmol/L sucrose with 1× protease inhibitor cocktail and 1×
phosphatase inhibitor cocktail (SIGMA, Saint Louis, USA).
Homogenates were centrifuged at 1,000g to remove unbroken
cells, nuclei, and heavy membranes, based on previous studies
(35). Proteins were quantified according to Lowry technique
(36). For protein detection, samples were subjected to sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
and electroblotted onto polyvinyl difluoride (PVDF) membranes
(PerkinElmer Life Sciences, Inc., Boston, MA). Membranes were
incubated with primary anti-mouse antibodies (anti-IL-1R, anti-
PKA, anti-p-PKA, anti-EPAC2, anti-GAPDH, and anti-PGE2
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TABLE 1 | Primer sequences and expected amplification products.

Transcript Forward primers Reverse primers Product size (bp)

RPL13a

Rpl13a, Gene ID: 22121

RPL13a-F

5′-gca tga ggt cgg gtg gaa g-3′
RPL13a-R

5′-ctc cac att ctt ttc tgc ctg ttt-3′
133

IL-1r1

Il1r1, Gene ID: 16177

IL-1r1-F

5′-tac agg gac tcc tgc tct ggt t-3′
IL-1r1-R

5′-ccc tcc aag acc tca ggc aa-3′
152

IL-1β

Il1b, Gene ID: 16176

IL-1β-F

5′-agc tga aag ctc tcc acc tca at-3′
IL-1β-R

5′-gtg ggt gtg ccg tct ttc att a-3′
163

EPAC2

Rapgef4, Gene ID: 56508

EPAC2-F

5′-gta cta cag gag cca gcc ctt-3′
EPAC2-R

5′-atg gcc ttc gag gct cta atc t-3′
149

Ptgs2

Ptgs2, Gene ID: 19225

Ptgs2-F

5′-agt tca tcc ctg acc ccc aag-3′
Ptgs2-R

5′-gaa aag gcg cag ttt atg ttg tct-3′
185

Mc2r

Mc2r, Gene ID: 17200

Mc2r-F

5′-gac ctt ctg ccc aaa taa ccc tt-3′
Mc2r -R

5′-cgg ttg cag aag agc atc ctt t-3′
159

Specific selected primers for IL-1β, IL-1r1, EPAC2, Ptgs2, Mc2r, and RPL13a transcripts (quantitative polymerase chain reaction). RPL13a, ribosomal protein L13A; IL-1r1, interleukin 1

receptor type I; IL-1β, interleukin 1 beta; EPAC2, rap guanine nucleotide exchange factor (GEF) 4; Ptgs2, prostaglandin-endoperoxide synthase 2; Mcr2, melanocortin 2 receptor; bp,

base pair.

synthase from Santa Cruz Biotechnology). The expression of
total and phosphorylated isoforms of both PKA was analyzed
by stripping in the same membrane. Finally, protein levels were
detected by an enhanced chemiluminescence detection system
(Pierce ECL, Thermo Fisher Scientific, USA). Immunoreactive
bands were quantified by densitometry using the Image J
software (imagej.nih.gov).

Immunohistochemical Staining
Immunohistochemistry studies were performed on 4-
µm paraffin sections from adrenal glands. Sections were
deparaffinized with xylene, rehydrated in a gradient series of
alcohol (100, 95, and 45% alcohol) and rinsed in PBS. Each
section was covered with 0.3% peroxyacetic acid for 15min
to block endogenous peroxidase activity and microwaved for
antigen retrieval (100W, 5min × 3min), and cooled at room
temperature (RT) for 20min. Then, sections were incubated with
the anti-MC2R (Santa Cruz Biotechnology, dilution 1/50) at RT
during 60min, and then rinsed again. This step was followed
by incubation with a streptavidin–biotin–peroxidase antibody
complex (BD Pharmingen) for 30min at RT. Slides were then
treated with streptavidin peroxidase reagent for 10min. The
sections were visualized with 3,3′-diaminobenzidine (DAB),
counterstained with hematoxylin, and mounted in mounting
medium for microscopical observation.

RNA Isolation, cDNA Synthesis, and qPCR
Total RNA was isolated from adrenals using TRI Reagent
(Genbiotech). cDNA was synthesized from 2 µg of total RNA
by extension of oligo dT primers (Invitrogen, Carlsbad, CA,
USA) with M-MuLV reverse transcriptase (Fermentas, Vilnius,
Lithuania) according to the manufacturer’s instructions. qPCR
using 5X HOT FIREPol R© Eva Green qPCR Mix Plus (Solis
BioDyne, Tartu, Estonia) was performed in a StepOne Plus
Real-Time PCR System (Thermo Fisher Scientific). Thermal
cycling conditions were 15min at 95◦C followed by 40 PCR
cycles of denaturing at 95◦C for 15 s, 25 s for annealing at

60◦C, and 25 s for elongation at 72◦C. Fluorescence readings
were performed during 10 s at 80◦C before each elongation
step. RPL13a (Gene ID: 22121) transcript was also measured
and used as endogenous control to normalize the expression
of mRNA determinations. External curves constituted by
serial dilutions of cDNA of the transcript to be quantified
were included in each run. Data are expressed as fold
change with respect to RPL13a. Primer sequences are detailed
in Table 1.

Statistics
Data are shown as mean ± standard error of the mean (SEM),
unless otherwise stated. Statistical analysis was performed by the
non-parametric analysis of variance Kruskal–Wallis followed by
Dunn post-test (k > 2) or U de Mann–Whitney test (k = 2).
The GraphPad Instat 4.0 software (GraphPad, California, USA)
was used for statistical analyses, and differences were considered
significant when p value was <0.05.

RESULTS

Tc Infection Induces Both
ACTH-Dependent and -Independent
Phases of GC Secretion
In Tc-infected C57BL/6 mice, parasitemia begins to be evident
from day 7 post-infection (pi), followed by a marked and
progressive increase (data not shown). As seen in earlier studies,
infection was lethal in all animals with a mean survival time of
24–26 days (31, 32).

To investigate the dynamic of ACTH and GC secretion in Tc-
infected mice, plasma samples were obtained at different time
points following infection. The main GC hormone present in
rodents is CT and in humans cortisol. Basal CT levels in blood
from non-infected mice were 2.1 ± 1.3 µg/dl, while basal ACTH
concentrations were 16.2 ± 2.8. GC rise began to be observed
from day 7 pi and increased progressively until day 21 pi (20-fold
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FIGURE 1 | Relationship between ACTH, CT and IL-1β systemic levels. (A)

IL-1β and ACTH showed an independent behavior after 14 days pi. Solid bars

represent mean serum ACTH levels and dashed lines indicated serum IL-1β

concentrations [ACTH: &p < 0.05 vs. day 0 pi; IL-1β: *p < 0.05 vs. day 0 pi].

(B) ACTH and CT showed the classical coupled pattern of secretion until day

14 pi (defined as ACTH-dependent pathway) and a dissociated behavior

afterwards (defined as ACTH-independent pathway) Solid bars correspond to

CT levels and dashed line represents ACTH levels [ACTH: &p < 0.05 vs. day 0

pi; CT: #p < 0.05 vs. day 0 pi]. In all cases, lines are interpolations of mean

values, thus approximating the time course of parameter levels between the

measured time points. pi, post-infection.

increase), while ACTH peaked by day 11 pi (4.3-fold increase),
further lowering to values seen in control mice at day 14 pi,
to reach quite reduced amounts by day 21 pi. These results
showed that GC secretion is only matched to ACTH levels nearly
during the first 2 weeks of infection, being ACTH-uncoupled
afterwards (Figure 1A).

Tc infection increased plasma levels of IL-1β as well as
other HPA axis-activating cytokines such as TNF-α, IFN-γ,
or IL-6 (Supplementary Figure 1A). Among pro-inflammatory
cytokines involved in the HPA axis activation, IL-1β is the
most potent one. As can be seen in Figure 1A, the rise of
IL-1β was observed at day 7 pi, probably constituting the
main stimulus for ACTH-triggered CT synthesis in the initial
response, whereas in more advanced infection, ACTH release

seems not to be fueled by IL-1β (the same was true for TNF-
α, IFN-γ, and IL-6). It follows that, during Tc infection in
C57BL/6mice, GC secretion does exhibit a dual control: an initial
ACTH-dependent mechanism followed by an ACTH-uncoupled
one (Figure 1B).

ACTH-Dependent Functional Response Is
Evidenced by the P-PKA/PKA Ratio
ACTH stimulates GC production through MC2R and also
regulates MC2R gene and protein expression. The ligation of
ACTH to MC2R activates the adenylyl cyclase cascade, leading
to cAMP production. This step is followed by phosphorylation
of cAMP-dependent PKA and the subsequent activation
of several transcription factors inducing the expression of
steroidogenic enzymes, like StAR (Supplementary Figure 1B).
The latter in fact occurred during Tc. As seen in Figure 2A,
MC2R protein expression peaked at day 11 pi, matching
with higher ACTH levels. In the following days, MCR2
expression decreased, coinciding with the lowest ACTH
plasma concentration. Consistent with protein data, MC2R
gene expression decreased after 16 days pi (Figure 2B). In
line with higher MCR2 protein expression, the p-PKA/PKA
ratio revealed its highest point at day 11 pi (Figure 2C).
Moreover, we also verify that MC2R expression was
restricted to the zona fasciculata in Tc-infected animals
(Figure 2D). The poor signaling shown by the MC2R/PKA
pathway after 14 days pi indicates that mediators other
than ACTH sustain the late GC synthesis in Tc-infected
animals, reinforcing the view that GC synthesis is ACTH-
dependent only in the first period of infection, and further
becomes ACTH-independent.

IL-1β and IL-1RI Are Expressed in Adrenal
Glands During Infection
Besides the hypothalamic effects of IL-1β, some studies showed
that it also stimulates the steroidogenesis in vitro (37, 38),
whereas human adrenal cells are also able to produce IL-1β
(25). Since intra-adrenal production of IL-1β may represent an
autocrine/paracrine factor involved in GC synthesis during the
ACTH-independent phase, adrenal glands from Tc-infected mice
were next studied for the expression of IL-1β and their receptor.
In Tc-infected mice, the increase in GC levels not only occurred
in parallel with the systemic elevation of IL-1β, but also with an
increase in the IL-1β synthesis within adrenal glands (Figure 3A).
Adrenal IL-1β transcripts begin to increase after 14 days pi,
coinciding with the onset of the ACTH-independent phase.

Since IL-1β may locally signal through its receptor to enhance
GC secretion in the ACTH-independent phase, the intra-adrenal
expression of IL-1R1 was also investigated (Figures 3B,C). IL-
1RI mRNA contents paralleled protein counterparts, showing no
gross changes throughout infection, except on days 17 and 15 pi
where both levels are, respectively, diminished (Figures 3B,C).
These results suggest that IL-1β/IL-1RI signaling was off in the
ACTH-independent phase.
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FIGURE 2 | ACTH-dependent pathway analysis. (A) Western blot analyses of the MC2R expression throughout infection. Bars represent the densitometry with data

from day 0 pi taken as 100%. Optical density was normalized to GAPDH. In the representative blot, lines are numbered according to the day pi. (B) MC2R mRNA

levels in adrenal cells from Tc-infected mice at different days pi. (C) Western blot analyses of the p-PKA/PKA ratio at different days pi. In the representative blot, lines

are numbered according to the day pi. Basal levels are represented by a white column; light gray columns represent p-PKA/PKA ratio levels during the

ACTH-dependent phase; and dark gray columns represent p-PKA/PKA ratio levels during the ACTH-independent phase. (D) Immunohistochemical localization of

MC2R in the adrenal cortex (magnification 20×). Positive immunoreactivity was observed in the fascicular zone from both non-infected (middle panel) and Tc-infected

mice (14-day pi; right panel). Left panel shows the negative control. Tc-infected animals evidenced a clear hyperplasia of the zona fasciculata (demarcated with

arrows). Results are expressed as mean ± SEM, from 3 to 5 mice/group/day. A representative experiment from three independent series is shown. *p < 0.05 vs. day

0 pi. AU, arbitrary units; Tc, Trypanosoma cruzi; pi, post-infection.

EPAC2 and PGE2 Synthase Cell
Signaling-Related Factors Are Linked to
GC Synthesis During the
ACTH-Independent Phase
Besides PKA, EPAC2 may be involved in GC synthesis.
Aimed at evaluating whether EPAC2 may play a role in the
ACTH-independent phase, we next assessed EPAC2 expression.
As depicted in Figure 4, EPAC2 mRNA reached high levels
between 13 and 15 days pi (Figure 4A), whereas its protein
content attained elevated concentrations after 14 days pi
(Figure 4B), pointing out that EPAC2 is likely to be involved
in the alternative pathway for steroidogenesis from Tc-
infected mice.

Additionally, in the ACTH-independent phase, the cAMP
supply may be sustained by PGE2. Measurements of PGE2
synthase mRNA and its protein showed two peaks of expression
(Figures 4C,D). The first one coincides with the maximum
release of ACTH, while the second weave is evident from 15 to
17 days pi, paralleling the ACTH-independent phase.

Overall, present data support the view that PGE2 may
stimulate the adrenal cAMP production during both the

ACTH-dependent and -independent phases, likely exerting a
positive regulatory role on GC production via EPAC2 during the
ACTH-independent phase.

DISCUSSION

The HPA axis is a dynamic system regulating the synthesis and
release of adrenal GC during stressful conditions. Particularly,
during states of immune hyperactivity, a rapid increase of GC
is critical to mount an efficient anti-inflammatory response
and hence preserving the energy supply required by immune
cells. In the context of acute experimental Chagas disease,
the relevance of HPA activation and the consequent role of
GC as endogenous anti-inflammatory agents are undoubtful
(30, 31). The fact that GC rise coincided with the highest
circulating amounts of ACTH, together with an intensified
adrenal MC2R expression and an enhanced p-PKA/PKA ratio,
corroborate the existence of an ACTH-dependent pathway of GC
synthesis at the early stage of Tc infection. Furthermore, these
findings match with our earlier observations showing an evident
adrenal hyperplasia accompanied by an enhanced steroidogenic
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FIGURE 3 | Intra-adrenal expression of IL-1β and IL-1RI in Tc-infected mice.

(A) IL-1β and CT exhibited similar secretion kinetics throughout infection. Mean

serum levels of CT are indicated by solid bars, while dashed lines illustrate

IL-1β levels [IL-1β systemic: *p < 0.05 vs. day 0 pi; IL-1β intra-adrenal: &

p < 0.05 vs. day 0 pi]. (B) IL-1RI mRNA expression was diminished at day 15

pi. (C) Western blot analyses of IL-1RI expression throughout infection showed

a down-regulation at day 17 pi. Basal levels are represented by a white

column; light gray and dark gray columns represent IL-1β transcription levels

during the ACTH-dependent phase and ACTH-independent phases,

respectively. Results are expressed as mean ± SEM, from 3 to 5

mice/group/day. IL-1β and IL-1RI transcripts were normalized against RPL13a

gene (Gene ID: 22121) as endogenous control. Data correspond to a

representative experiment from three independent rounds. *p < 0.05 vs. basal

expression (day 0 pi). AU, arbitrary units; pi, post-infection.

machinery since StAR, CYP11A1, CYP11B1, and 11β-HSD1
expression are increased in this period (32).

Expanding our former results (32), we now reveal that
infection-driven GC rise is coupled to ACTH solely during the
first 2 weeks, to further become dissociated. The uncoupled
ACTH-GC response observed in the second phase of infection
denote the existence of ACTH-independent mechanisms
maintaining the supply of GC. The occurrence of changes in the
adrenal microenvironment conditioned by the infection may be
central for such ACTH-independent GC secretion.

For instance, constitutive activation of MC2R or their
signaling molecules has been thought as likely accounting for GC
production in an ACTH-independent form (39, 40). However,
this scenario does not occur in the late phase of Tc infection,

since the MC2R/PKA pathway was evidently downregulated just
after 2 weeks, favoring the lack of response to ACTH even in
the presence of hormone basal levels. In vitro studies in 24-h
LPS-exposed adrenal cells revealed a reduced MC2R expression
accompanied by an ameliorated CT production (41), suggesting
that ACTH-independentmechanisms underlying GC production
may require a more prolonged stimulus. In this regard, MC2R
internalization seems to be triggered by a prolonged ACTH
binding to MC2R followed by an increase in p-PKA (42,
43). Moreover, in vitro evidence showed that, at least, MC2R
desensitization results from a regulatory mechanism implicating
MC2R internalization by clathrin-mediated endocytosis (42, 44,
45), which also appears to be insensitive to PKA activation from
heterologous sources other than ACTH (44). Under non-stressful
conditions, nearly 28% of internalized MC2Rmay be recycling to
the cell surface, while the remaining fraction may be subjected to
lysosomal degradation (43). Since MCR2 immunoreactivity after
14 days pi seems to be mostly localized within cell cytoplasm,
it is conceivable that under prolonged stressful conditions like
Tc infection, mechanisms about MC2R protein internalization
and degradation are boosted, reinforcing MCR2 desensitization.
Moreover, transcriptional activity of the Mc2r gene may be
upregulated by diverse transcription factors, like JDP2 (Jun
dimerization protein 2) (46), FOXL2 (Forkhead box protein L2),
or NR5A1 (steroidogenic factor 1) (47), which, in the context
of Tc infection, may be disturbed. Further studies are needed to
address such issue.

The ACTH-GC dissociation taking place in the late phase of
infection may be explained by PGE2 stimulation of fasciculate
cells. PGE2 is produced in response to inflammation, injury or
mechanical stress and may also stimulate steroid production
partly by triggering adrenal cAMP production (48). PGE2
synthase is the enzyme responsible for the PGE2 synthesis,
being likely that autocrine PGE2-stimulated expression of the
PGE2 receptor (22, 49, 50) was exerting a positive regulatory
role on GC synthesis. Strikingly, during Tc infection, PGE2
synthase showed a noticeable biphasic response, compatible with
both ACTH-dependent and -independent phases, suggesting that
autocrine PGE2 production may favor CT secretion. In the
early phase, PGE2 may stimulate CT release from adrenal cells
synergistically with ACTH, increasing cAMP. On the other hand,
during the ACTH-hyporesponsive period, CT secretion may be
sustained by the PGE2 produced because of increased PGE2
synthase bioavailability, as shown in Figure 4C. Furthermore,
induction of cAMP by PGE2 when the PKA signaling cascade
was shutting off may favor EPAC-mediated actions (51, 52). The
abundance of EPAC2 protein in adrenal glands from infected
mice after 14 days pi, along with its increased mRNA the
day before, is highly suggestive that cAMP-activated EPAC,
rather than PKA, mediates GC production during the late phase
of infection.

Studies in human adrenal adenomas led to propose the
existence of an alternative pathway of GC synthesis governed
by IL-1β and IL-1RI, instead of ACTH (53). Indeed, similar
mechanisms have been proposed for IL-1α (38). In our model,
both systemic and intra-adrenal IL-1β may elicit its effects
by promoting the local secretion of PGE2 or other factors
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FIGURE 4 | ACTH-independent pathway analysis. (A,B) EPAC2 mRNA and protein expression are increased during the ACTH-independent phase. (C,D) PGE2

synthase mRNA and protein are expressed throughout infection, showing a peak during both the ACTH-dependent and independent phases. Bars from immunoblots

represent the densitometry with data from day 0 pi taken as 100%. Optical density was normalized to GAPDH. Basal levels are represented by a white column; light

gray and dark gray columns represent IL-1β transcription levels during the ACTH-dependent phase and ACTH-independent phases, respectively. EPAC2 and PGE2

synthase transcripts were normalized against RPL13a gene (Gene ID: 22121) as endogenous control. Results are expressed as mean ± SEM, from 3 to 5

mice/group/day. A representative experiment from three independent series is shown. *p < 0.05 vs. basal expression (day 0 pi). AU, arbitrary units; pi, post-infection.

that stimulate the steroidogenic machinery in both ACTH-

dependent and independent phases. However, IL-1β/IL-1RI
signaling seemed to be slightly depressed in the second phase;

in this sense, IL-1β does not seem to contribute to the
mechanisms sustaining the ACTH-independent GC production.

While IL-1β was found to promote catecholamine production
by adrenomedullar cells (54, 55), a synergy between IL-1β and
catecholamines in driving GC secretion in this experimental
model sounds unlikely. Our previous studies in the late phase of
experimental Chagas disease in C57BL/6 female mice indicated
that neither infection nor sympathectomy affected noradrenaline
contents in adrenal glands (56).

Collectively, our data strongly point to the existence of two
phases dealing with GC synthesis during Tc infection in mice,

an initial phase that matches with the well-known ACTH-
dependent pathway, followed by a second one characterized

by an ACTH-hyporesponsive state. The inflamed adrenal
microenvironment may also tune the production of intracellular
mediators influencing GC synthesis like PGE2 synthase and
EPAC2, which emerge as driving forces for GC production during

progressive Tc infection. Lastly, CT production seems to be
associated to a biphasic action of PGE2, implying that the effect of
PGE2/cAMP in the ACTH-independent phase may be mediated
by EPAC2.

Increasing amount of the experimental evidence indicated
that the degree of dissociation between ACTH and GC

secretion is of clinical relevance, as it has been associated
with the level of complications of sepsis, surgery, malignant
disease, and depression. In the context of human Chagas
disease, beyond the disturbed HPA response in terms of the
CG/dehydroepiandrosterone ratio, GC levels fell within normal
levels (57, 58). Nevertheless, it is possible that during the acute
symptomatic phase of human Chagas disease, as seen in the
highly lethal oral acute infection (28, 29), the regulation of
GC production may be like the one seen in the experimental
model. Further studies are needed to address whether oral Chagas
disease outcomes are linked to ACTH-GC decoupling response.
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