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Multi-ancestry GWAS of the electrocardiographic
PR interval identifies 202 loci underlying cardiac
conduction
Ioanna Ntalla et al.#

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated

with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardio-

vascular mortality. Here we report a multi-ancestry (N= 293,051) genome-wide association

meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been

reported. Variants at identified loci increase the percentage of heritability explained, from

33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and

cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction.

Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic

syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular

pathology in the general population. We show that polygenic predisposition to PR interval

duration is an endophenotype for cardiovascular disease, including distal conduction disease,

AF, and atrioventricular pre-excitation. These findings advance our understanding of the

polygenic basis of cardiac conduction, and the genetic relationship between PR interval

duration and cardiovascular disease.
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The electrocardiogram is among the most common clinical
tests ordered to assess cardiac abnormalities. Reproducible
waveforms indicating discrete electrophysiologic processes

were described over 100 years ago, yet the biological under-
pinnings of conduction and repolarization remain incompletely
defined. The electrocardiographic PR interval reflects conduction
from the atria to ventricles, across specialized conduction tissues
such as the atrioventricular node and the His-Purkinje system.
Pathological variation in the PR interval may indicate heart block
or pre-excitation, both of which can lead to sudden death1. The
PR interval also serves as a risk factor for atrial fibrillation and
cardiovascular mortality1–3. Prior genetic association studies have
identified 64 PR interval loci4–13. Yet the underlying biological
mechanisms of atrioventricular conduction and relationships
between genetic predisposition to PR interval duration and dis-
ease are incompletely characterized.

To enhance our understanding of the genetic and biological
mechanisms of atrioventricular conduction, we perform genome-
wide association studies (GWAS) meta-analyses of autosomal and
X chromosome variants mainly imputed with the 1000 Genomes
Project reference panel (http://www.internationalgenome.org)14

of PR interval duration. We then conduct downstream in silico
analyses to elucidate candidate genes and key pathways, and
examine relationships between genetic variants linked to PR
interval duration and cardiovascular disease in the UK biobank
(UKB; https://www.ukbiobank.ac.uk). Over 200 loci are genome-
wide significant, and our results imply key regulation processes
for atrioventricular conduction, and candidate genes in cardiac
muscle development/contraction and the cytoskeleton. We
observe associations between polygenic predisposition to PR
interval duration with distal conduction disease, AF, and atrio-
ventricular pre-excitation. Our findings highlight the polygenic
basis of atrioventricular conduction, and the genetic relationship
between PR interval duration and other cardiovascular diseases.

Results
Meta-analysis of GWASs. We performed a primary meta-
analysis including 293,051 individuals of European (92.6%),
African (2.7%), Hispanic (4%), and Brazilian (<1%) ancestries
from 40 studies (Supplementary Data 1 and 2, Supplementary
Table 1). We also performed ancestry-specific meta-analyses
(Fig. 1). A total of 202 genome-wide significant loci (P < 5 × 10−8)
were identified in the multi-ancestry analysis, of which 141 were
not previously reported (Supplementary Data 3, Fig. 2, Supple-
mentary Figs. 1 and 2). We considered for discovery only variants
present in >60% of the maximum sample size in the GWAS
summary results, a filtering criterion used to ensure robustness of
associated loci (median proportion of sample size included in
analyses for lead variants 1.0, interquartile range 0.99–1.00;
Methods). There was strong support in our data for all 64 pre-
viously reported loci (61 at P < 5 × 10−8 and 3 at P < 1.1 × 10−4;
Supplementary Data 4 and 5). In a secondary analysis among the
European ancestry subset, a total of 127 loci not previously
reported reached genome-wide significance (Supplementary
Data 6, Supplementary Figs. 1–4), of which lead variants at 8 loci
were borderline genome-wide significant (P < 9.1 × 10−7) in our
multi-ancestry meta-analysis. None of the previously unreported
loci were genome-wide significant in African or Hispanic/Latino
ancestry meta-analyses (Supplementary Data 7, Supplementary
Figs. 1 and 3). We observed no genome-wide significant loci in
the X chromosome meta-analyses (Supplementary Fig. 5). In
sensitivity analyses, we examined the rank-based inverse normal
transformed residuals of PR interval. Results of absolute and
transformed trait meta-analyses were highly correlated (P > 0.94,
Supplementary Data 8–10, Supplementary Figs. 6 and 7).

By applying joint and conditional analyses in the European
meta-analysis data, we identified multiple independently asso-
ciated variants (Pjoint < 5 × 10−8 and r2 < 0.1) at 12 previously not
reported and 25 previously reported loci (Supplementary
Data 11). The overall variant-based heritability (h2g) for the PR
interval estimated in 59,097 unrelated European participants
from the UKB with electrocardiograms was 18.2% (Methods). In
the UKB, the proportion of h2g explained by variation at all loci
discovered in our analysis was 62.6%, compared with 33.5% when
considering previously reported loci only.

We annotated variants at 149 loci (141 previously not reported
loci from the multi-ancestry meta-analysis and 8 loci from the
meta-analysis of European ancestry subset). The majority of the
lead variants at the 149 loci were common (minor allele
frequency, MAF > 5%). We observed 6 low-frequency (MAF
1–5%) variants, and one rare (MAF < 1%) predicted damaging
missense variant. The rare variant (rs35816944, p.Ser171Leu) is in
SPSB3 encoding SplA/Ryanodine Receptor Domain and SOCS
Box-containing 3. SPSB3 is involved in degradation of the
transcription factor SNAIL, which regulates the epithelial-
mesenchymal transition15, and has not been previously associated
with cardiovascular traits. At MYH6, a previously described locus
for PR interval6,10, sick sinus syndrome16, AF and other
cardiovascular traits17, we observed a previously not reported
predicted damaging missense variant in MYH6 (rs28711516, p.
Gly56Arg). MYH6 encodes the α-heavy chain subunit of cardiac
myosin. In total, we identified missense variants in genes at
11 previously not reported loci, one from the European subset
meta-analysis, and 6 previously reported loci (Supplementary
Data 12). These variants are a representation of multiple variants
at each locus, which are in high LD, and thus may not be the
causative variant.

Expression quantitative trait loci (eQTLs). PR interval lead
variants (or best proxy [r2 > 0.8]) at 43 previously not reported
and 23 previously reported loci were significant cis-eQTLs (at a
5% false discovery rate (FDR) in left ventricle (LV) and right
atrial appendage (RAA) tissue samples from the Genotype-Tissue
Expression (GTEx; https://gtexportal.org/home/) project18. Var-
iants at 13 previously not reported and 6 previously reported loci
were eQTLs in spleen, which was used as negative control tissue
(Supplementary Data 13). The PR interval associations and
eQTLs colocalized at 31 previously not reported loci and 14
previously reported loci (posterior probability [PP] > 75%. Var-
iants at 9 previously not reported loci were significant eQTLs only
in LV and RAA tissues with consistent directionality of gene
expression.

Predicted gene expression. In an exploratory analysis, we also
performed a transcriptome-wide analysis to evaluate associations
between predicted gene expression in LV and RAA with the PR
interval. We identified 113 genes meeting our significance
threshold (P < 3.1 × 10−6, after Bonferroni correction), of which
91 were localized at PR interval loci (within 500 kb from a lead
variant; Supplementary Data 14, Supplementary Fig. 8). Longer
PR interval duration was associated with decreased levels of
predicted gene expression for 57 genes, and increased levels for 56
genes (Fig. 3). In spleen tissues, only 31 gene expression-PR
interval associations were detected, and 19 of them did not
overlap with the findings in heart tissues.

Regulatory annotation of loci. Most PR interval variants
were annotated as non-coding. Therefore, we explored whether
associated variants or proxies were located in transcriptionally
active genomic regions. We observed enrichment for DNase
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I-hypersensitive sites in fetal heart tissue (P < 9.36 × 10−5, Supple-
mentary Fig. 9). Analysis of chromatin states indicated variants at
97 previously not reported, 6 European, and 52 previously reported
loci were located within regulatory elements that are present in
heart tissues (Supplementary Data 15), providing support for gene
regulatory mechanisms in specifying the PR interval. To identify

distal candidate genes at PR interval loci, we assessed the same set of
variants for chromatin interactions in a LV tissue Hi-C dataset19.
Forty-eight target genes were identified (Supplementary Data 16).
Variants at 35 previously not reported and 3 European loci were
associated with other traits, including AF and coronary heart dis-
ease (Supplementary Data 17, Supplementary Fig. 10).
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Fig. 1 Overview of the study design. An overview of contributing studies, single-stage discovery approach, and downstream bioinformatics and in silico
annotations performed to link variants to genes, and polygenic risk score analysis to link variants to cardiovascular disease risk is illustrated. Asterisk (*) The
multi-ancestry meta-analysis is our primary analysis. Previously not reported loci were identified from the multi-ancestry meta-analysis. Ancestry specific
and chromosome X meta-analysis are secondary. Hash (#) For bioinformatics and in silico annotations we also included loci that reached genome-wide
significance in European only meta-analysis (N= 8) and were borderline genome-wide significant in the multi-ancestry meta-analysis.
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Fig. 2 Manhattan plot of the multi-ancestry meta-analysis for PR interval. P values are plotted on the -log10 scale for all variants present in at least 60%
of the maximum sample size from the fixed-effects meta-analysis of 293,051 individuals from multiple ancestries (multi-ancestry meta-analysis).
Associations of genome-wide significant (P < 5 × 10−8) variants at previously not reported (N= 141) and previously reported loci (N= 61) are plotted in
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In silico functional annotation and pathway analysis. Bioin-
formatics and in silico functional annotations for potential can-
didate genes at the 149 loci are summarized in Supplementary
Data 18 and 19. Using a prior GWAS of AF20,21, we identified
variants with shared associations between PR interval duration
and AF risk (Supplementary Fig. 11). Enrichment analysis of
genes at PR interval loci using Data driven Expression-Prioritized
Integration for Complex Traits (DEPICT: https://data.
broadinstitute.org/mpg/depict/)22 indicated heart development
(P= 1.87 × 10−15) and actin cytoskeleton organization (P=
2.20 × 10−15) as the most significantly enriched processes (Sup-
plementary Data 20 and 21). Ingenuity Pathway Analysis (IPA;
https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis/) supported heart development, ion channel
signaling and cell-junction/cell-signaling amongst the most sig-
nificant canonical pathways (Supplementary Data 22).

Polygenic risk scores (PRSs) with cardiovascular traits. Finally,
we evaluated associations between genetic predisposition to PR
interval duration and 16 cardiac phenotypes chosen a priori using
~309,000 unrelated UKB European participants not included in
our meta-analyses23. We created a PRS for PR interval using the
European ancestry meta-analysis results (Fig. 4, Supplementary
Table 2). Genetically determined PR interval prolongation was
associated with higher risk of distal conduction disease (atrio-
ventricular block; odds ratio [OR] per standard deviation 1.11,
P= 7.02 × 10−8) and pacemaker implantation (OR 1.06, P=
1.5 × 10−4). In contrast, genetically determined PR interval pro-
longation was associated with reduced risk of AF (OR 0.95, P=
4.30 × 10−8) and was marginally associated with a reduced risk of

atrioventricular pre-excitation (Wolff–Parkinson–White syn-
drome; OR 0.85, P= 0.003). Results were similar when using a
PRS derived using the multi-ancestry meta-analysis results
(Supplementary Fig. 12, Supplementary Table 2, and Supple-
mentary Data 3).

Discussion
In a meta-analysis of nearly 300,000 individuals, we identified 202
loci, of which 141 were previously not reported underlying car-
diac conduction as manifested by the electrocardiographic PR
interval. Apart from confirming well-established associations in
loci harboring ion-channel genes, our findings further underscore
the central importance of heart development and cytoskeletal
components in atrioventricular conduction10,12,13. We also
highlight the role of common variation at loci harboring genes
underlying monogenic forms of arrhythmias and cardiomyo-
pathies in cardiac conduction.

We report signals in/near 12 candidate genes at previously not
reported loci with functional roles in cytoskeletal assembly (DSP,
DES, OBSL1, PDLIM5, LDB3, FHL2, CEFIP, SSPN, TLN2, PTK2,
GJA5, and CDH2; Fig. 5). DSP and DES encode components of
the cardiac desmosome, a complex involved in ionic commu-
nication between cardiomyocytes and maintenance of cellular
integrity. Mutations in the desmosome are implicated in
arrhythmogenic cardiomyopathy (ACM) and dilated cardio-
myopathy (DCM)24–28. Conduction slowing is a major compo-
nent of the pathophysiology of arrhythmia in ACM and other
cardiomyopathies29,30. OBSL1 encodes obscurin-like 1, which
together with obscurin (OBSCN) is involved in sarcomerogenesis
by bridging titin (TTN) and myomesin at the M-band31. PDLIM5

Fig. 3 Plausible candidate genes of PR interval from S-PrediXcan. Diagram of standard electrocardiographic intervals and the heart. The
electrocardiographic features are illustratively aligned with the corresponding cardiac conduction system structures (orange) reflected on the tracing. The
PR interval (labeled) indicates conduction through the atria, atrioventricular node, His bundle, and Purkinje fibers. Right: Supplementary Data 14 shows 113
genes whose expression in the left ventricle (N= 233) or right atrial appendage (N= 231) was associated with PR interval duration in a transcriptome-wide
analysis using S-PrediXcan and GTEx v7. Displayed genes include those with significant associations after Bonferroni correction for all tested genes (P <
3.1 × 10−6). Longer PR intervals were associated with increased predicted expression of 56 genes (blue) and reduced expression of 57 genes (orange).
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Fig. 4 Bubble plot of phenome-wide association analysis of European ancestry PR interval polygenic risk score. The polygenic risk score was derived
from the European ancestry meta-analysis. Orange circles indicate that polygenic predisposition to longer PR interval is associated with an increased risk of
the condition, whereas blue circles indicate that polygenic predisposition to longer PR interval is associated with lower risk of the condition. The darkness of
the color reflects the effect size (odds ratio, OR) per 1 standard deviation (s.d.) increment of the polygenic risk score from logistic regression. Sample size
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encodes a scaffold protein that tethers protein kinases to the Z-
disk, and has been associated with DCM in homozygous murine
cardiac knockouts32. FHL2 encodes calcineurin-binding protein
four and a half LIM domains 2, which is involved in cardiac
development by negatively regulating calcineurin/NFAT signaling
in cardiomyocytes33. Missense mutations in FHL2 have been
associated with hypertrophic cardiomyopathy34. CEFIP encodes
the cardiac-enriched FHL2-interacting protein located at the Z-
disc, which interacts with FHL2. It is also involved in
calcineurin–NFAT signaling, but its overexpression leads to car-
diomyocyte hypertrophy35.

Common variants in/near genes associated with monogenic
arrhythmia syndromes were also observed, suggesting these genes
may also affect atrioventricular conduction and cardiovascular
pathology in the general population. Apart from DSP, DES, and
GJA5 discussed above, our analyses indicate 2 additional candidate
genes (HCN4 and RYR2). HCN4 encodes a component of the
hyperpolarization-activated cyclic nucleotide-gated potassium
channel which specifies the sinoatrial pacemaker “funny” current,
and is implicated in sinus node dysfunction, AF, and left ven-
tricular noncompaction36–38. RYR2 encodes a calcium channel
component in the cardiac sarcoplasmic reticulum and is impli-
cated in catecholaminergic polymorphic ventricular tachycardia39.

Genes with roles in autonomic signaling in the heart (CHRM2,
ADCY5) were indicated from expression analyses (Supplementary
Data 13 and 18). CHRM2 encodes the M2 muscarinic cholinergic
receptors that bind acetylcholine and are expressed in the heart40.
Their stimulation results in inhibition of adenylate cyclase
encoded by ADCY5, which in turn inhibits ion channel function.
Ultimately, the signaling cascade can result in reduced levels of
the pacemaker “funny” current in the sinoatrial and atrioven-
tricular nodes, reduced L-type calcium current in all myocyte
populations, and increased inwardly rectifying IK.Ach potassium
current in the conduction tissues and atria causing cardiomyocyte
hyperpolarization41. Stimulation has also been reported to
shorten atrial action potential duration and thereby facilitate re-
entry, which may lead to AF42–44.

By constructing PRSs, we also observed that genetically
determined PR interval duration is an endophenotype for several
adult-onset complex cardiovascular diseases, the most significant
of which are arrhythmias and conduction disorders. For example,
our findings are consistent with previous epidemiologic data
supporting a U-shaped relationship between PR interval duration
and AF risk2. Although aggregate genetic predisposition to PR
interval prolongation is associated with reduced AF risk, top PR
interval prolonging alleles are associated with decreased AF risk
(e.g., localized to the SCN5A/SCN10A locus; Supplementary
Fig. 11) whereas others are associated with increased AF risk (e.g.,
localized to the TTN locus; Supplementary Fig. 11), consistent
with prior reports8. These findings suggest that genetic determi-
nants of the PR interval may identify distinct pathophysiologic
mechanisms leading to AF, perhaps via specifying differences in
tissue excitability, conduction velocity, or refractoriness. Future
efforts are warranted to better understand the relations between
genetically determined PR interval and specific arrhythmia
mechanisms.

In conclusion, our study more than triples the reported
number of PR interval loci, which collectively explain ~62% of
trait-related heritability. Our findings highlight important biolo-
gical processes underlying atrioventricular conduction, which
include both ion channel function, and specification of cytoske-
letal components. Our study also indicates that common varia-
tion in Mendelian cardiovascular disease genes contributes to
population-based variation in the PR interval. Lastly, we observe
that genetic determinants of the PR interval provide novel
insights into the etiology of several complex cardiac diseases,

including AF. Collectively, our results represent a major advance
in understanding the polygenic nature of cardiac conduction, and
the genetic relationship between PR interval duration and
arrhythmias.

Methods
Contributing studies. A total of 40 studies (Supplementary Methods) comprising
293,051 individuals of European (N= 271,570), African (N= 8,173), Hispanic
(N= 11,686), and Brazilian (N= 485) ancestries contributed GWAS summary
statistics for PR interval. Study-specific design, sample quality control and
descriptive statistics are provided in Supplementary Tables 1–3. For the majority of
the studies imputation was performed for autosomal chromosomes and X chro-
mosome using the 1000 Genomes (1000 G: http://www.internationalgenome.org)
project14 reference panel. A few studies used whole genome sequence data and the
Haplotype Reference Consortium (HRC: http://www.haplotype-reference-
consortium.org)/UK10K and 1000 G phase 3 panel was used for UK Biobank (Full
details are provided in Supplementary Table 2).

Ethical approval. All contributing studies had study-specific ethical approvals and
written informed consent. The details are provided in Supplementary Note 1.

PR interval phenotype and exclusions. The PR interval was measured in milli-
seconds (ms) from standard 12-lead electrocardiograms (ECGs), except in the UK
Biobank where it was obtained from 4-lead ECGs (CAM-USB 6.5, Cardiosoft
v6.51) recorded during a 15 second rest period prior to an exercise test (Supple-
mentary Methods). We requested exclusion of individuals with extreme PR interval
values (<80 ms or >320 ms), second/third degree heart block, AF on the ECG, or a
history of myocardial infarction or heart failure, Wolff–Parkinson–White syn-
drome, those who had a pacemaker, individuals receiving class I and class III
antiarrhythmic medications, digoxin, and pregnancy. Where data were available
these exclusions were applied.

Study-level association analyses. We regressed the absolute PR interval on each
genotype dosage using multiple linear regression with an additive genetic effect and
adjusted for age, sex, height, body mass index, heart rate and any other study-
specific covariates. To account for relatedness, linear mixed effects models were
used for family studies. To account for population structure, analyses were also
adjusted for principal components of ancestry derived from genotyped variants
after excluding related individuals. Analyses of autosomal variants were conducted
separately for each ancestry group. X chromosome analyses were performed
separately for males and females. Analyses using rank-based inverse normal
transformed residuals of PR interval corrected for the aforementioned covariates
were also conducted. Residuals were calculated separately by ancestral group for
autosomal variants, and separately for males and females for X chromosome
variants.

Centralized quality control. We performed quality control centrally for each
result file using EasyQC version 11.4 (https://www.uni-regensburg.de/medizin/
epidemiologie-praeventivmedizin/genetische-epidemiologie/software/#)45. We
removed variants that were monomorphic, had a minor allele count (MAC) < 6,
imputation quality metric <0.3 (imputed by MACH; http://csg.sph.umich.edu/
abecasis/mach/tour/imputation.html) or 0.4 (imputed by IMPUTE2; http://
mathgen.stats.ox.ac.uk/impute/impute_v2.html), had invalid or mismatched alleles,
were duplicated, or if they were allele frequency outliers (difference > 0.2 from the
allele frequency in 1000 G project). We inspected PZ plots, effect allele frequency
plots, effect size distributions, QQ plots, and compared effect sizes in each study to
effect sizes from prior reports for established PR interval loci to identify genotype
and study-level anomalies. Variants with effective MAC (= 2 × N ×MAF ×
imputation quality metric) <10 were omitted from each study prior to meta-
analysis.

Meta-analyses. We aggregated summary-level associations between genotypes
and absolute PR interval from all individuals (N= 293,051), and only from Eur-
opeans (N= 271,570), African Americans (N= 8,173), and Hispanic/Latinos (N=
12,823) using a fixed-effects meta-analysis approach implemented in METAL
(http://csg.sph.umich.edu/abecasis/metal/, release on 2011/03/25)46. We con-
sidered as primary our multi-ancestry meta-analysis, and ancestry-specific meta-
analyses as secondary. For the X chromosome, meta-analyses were conducted in a
sex-stratified fashion. Genomic control was applied (if inflation factor λGC > 1) at
the study level. Quantile–quantile (QQ) plots of observed versus expected –log10(P)
did not show substantive inflation (Supplementary Figs. 1 and 2).

Given the large sample size we undertook a one-stage discovery study design.
To ensure the robustness of this approach we considered for discovery only
variants reaching genome-wide significance (P < 5 × 10−8) present in at least 60%
of the maximum sample size (Nmax) in our GWAS summary results. We denote
loci as previously not reported if the variants map outside 64 previously reported
loci (Supplementary Methods, Supplementary Data 4) for both the multi-ancestry
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and ancestry-specific meta-analysis (secondary meta-analyses). Genome-wide
significant variants were grouped into independent loci based on both distance
(±500 kb) and linkage disequilibrium (LD, r2 < 0.1) (Supplementary Methods). We
assessed heterogeneity in allelic effect sizes among studies contributing to the meta-
analysis and among ancestral groups by the I2 inconsistency index47 for the lead
variant in each previously not reported locus. LocusZoom (http://locuszoom.org/)
48 was used to create region plots of identified loci. For reporting, we only declare
as previously not reported genome-wide significant loci from our primary meta-
analysis. However, we considered ancestry-specific loci for annotation and
downstream analyses. The results from secondary analyses are specifically indicated
in Supplementary Data 6 and 7.

Meta-analyses (multi-ancestry [N= 282,128], European only [N= 271,570],
and African [N= 8,173]) of rank-based inverse normal transformed residuals of
PR interval were also performed (sensitivity meta-analyses). Because not all studies
contributed summary-level association statistics of the transformed PR interval, we
considered as primary the multi-ancestry meta-analysis of absolute PR interval for
which we achieved the maximum sample size. Loci that met our significance
criteria in the meta-analyses of transformed PR interval were not taken forward for
downstream analyses.

Conditional and heritability analysis. Conditional and joint GWAS analyses were
implemented in GCTA v1.91.3 (https://cnsgenomics.com/software/gcta/
#Overview)49 using summary-level variant statistics from the European ancestry
meta-analysis to identify independent association signals within PR interval loci.
We used 59,097 unrelated (kinship coefficient >0.0884) UK Biobank participants of
European ancestry as the reference sample to model patterns of LD between var-
iants. We declared as conditionally independent any genome-wide significant
variants in conditional analysis (Pjoint < 5 × 10−8) not in LD (r2 < 0.1) with the lead
variant in the locus.

Using the same set of individuals from UK Biobank, we estimated the aggregate
genetic contributions to PR interval with restricted maximum likelihood as
implemented in BOLT-REML v2.3.4 (https://data.broadinstitute.org/alkesgroup/
BOLT-LMM/)50. We calculated the additive overall variant-heritability (h2g) based
on 333,167 LD-pruned genotyped variants, as well as the h2g of variants at PR
interval associated loci only. Loci windows were based on both distance (±500 kb)
and LD (r2 > 0.1) around previously not reported and reported variants
(Supplementary Methods). We then calculated the proportion of total h2g
explained at PR interval loci by dividing the h2g estimate of PR interval loci by the
total h2g.

Bioinformatics and in silico functional analyses. We use Variant Effect Predictor
(VEP; https://www.ensembl.org/info/docs/tools/vep/index.html)51 to obtain func-
tional characterization of variants including consequence, information on nearest
genes and, where applicable, amino acid substitution and functional impact, based
on SIFT52 and PolyPhen-253 prediction tools. For non-coding variants, we assessed
overlap with DNase I–hypersensitive sites (DHS) and chromatin states as deter-
mined by Roadmap Epigenomics Project54 across all tissues and in cardiac tissues
(E083, fetal heart; E095, LV; E104, right atrium; E105, right ventricle) using Hap-
loReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)55 and
using FORGE (https://github.com/iandunham/Forge).

We assessed whether any PR interval variants were related to cardiac gene
expression using GTEx (https://gtexportal.org/home/)18 version 7 cis-eQTL LV
(N= 233) and RAA (N= 231) European data. If the variant at a locus was not
available in GTEx, we used proxy variants (r2 > 0.8). We then evaluated the effects
of predicted gene expression levels on PR interval duration using S-PrediXcan
(https://github.com/hakyimlab/MetaXcan)56. GTEx18 genotypes (variants with
MAF > 0.01) and normalized expression data in LV and RAA provided by the
software developers were used as the training datasets for the prediction models.
The prediction models between each gene-tissue pair were performed by Elastic-
Net, and only significant models for prediction were included in the analysis, where
significance was determined if nested cross validated correlation between predicted
and actual levels were greater than 0.10 (equivalent to R2 > 0.01) and P value of the
correlation test was less than 0.05. We used the European meta-analysis summary-
level results (variants with at least 60% of maximum sample size) as the study
dataset and then performed the S-PrediXcan calculator to estimate the expression-
PR interval associations. For both eQTL and S-PrediXcan assessments, we
additionally included spleen tissue in Europeans (N= 119) as a negative control. In
total, we tested 5366, 5977, and 4598 associations in LV, RAA, and spleen,
respectively. Significance threshold of S-PrediXcan was set at P= 3.1 × 10−6

(=0.05/(5977+ 5366+ 4598)) to account for multiple testing. In order to
determine whether the GWAS identified loci were colocalized with the eQTL
analysis, we performed genetic colocalization analysis for eQTL and S-PrediXcan
identified gene regions, using the Bayesian approach in COLOC package (R version
3.5; https://cran.r-project.org/web/packages/coloc/index.html). Variants located
within the same identified gene regions were included. We set the significant
threshold for the PP (two significant associations sharing a common causal variant)
at >75%.

We applied GARFIELD (GWAS analysis of regulatory or functional
information enrichment with LD correction; https://www.ebi.ac.uk/birney-srv/
GARFIELD/)57 to analyze the enrichment patterns for functional annotations of

the European meta-analysis summary statistics, using regulatory maps from the
Encyclopedia of DNA Elements (ENCODE)58 and Roadmap Epigenomics54

projects. This method calculates odds ratios and enrichment P values at different
GWAS P value thresholds (denoted T) for each annotation by using a logistic
regression model accounting for LD, matched genotyping variants and local gene
density with the application of logistic regression to derive statistical significance.
Threshold for significant enrichment was set to P= 9.36 × 10−5 (after multiple-
testing correction for the number of effective annotations).

We identified potential target genes of regulatory variants using long-range
chromatin interaction (Hi-C) data from the LV19. Hi-C data was corrected for
genomic biases and distance using the Hi-C Pro and Fit-Hi-C pipelines according
to Schmitt et al. (40 kb resolution – correction applied to interactions with
50 kb–5Mb span). We identified the promoter interactions for all potential
regulatory variants in LD (r2 > 0.8) with our lead and conditionally independent PR
interval variants and report the interactors with the variants with the highest
regulatory potential a Regulome DB score of ≤2 (RegulomeDB; http://www.
regulomedb.org) to annotate the loci.

We performed a literature review, and queried the Online Mendelian
Inheritance in Man (OMIM; https://www.omim.org/) and the International Mouse
Phenotyping Consortium (https://www.mousephenotype.org/) databases for all
genes in regions defined by r2 > 0.5 from the lead variant at each previously not
reported locus. We further expanded the gene listing with any genes that were
indicated by gene expression or chromatin interaction analyses. We performed
look-ups for each lead variant or their proxies (r2 > 0.8) for associations (P < 5 ×
10−8) for common traits using both GWAS catalog59 and PhenoScanner v260

databases. For AF, we summarized the results of lead PR interval variants for PR
interval and their associations with AF risk from two recently published
GWASs20,21. We included variants in high linkage disequilibrium with lead PR
variants (r2 > 0.7).

Geneset enrichment and pathway analyses. We used DEPICT (https://data.
broadinstitute.org/mpg/depict/)22 to identify enriched pathways and tissues/cell
types where genes from associated loci are highly expressed using all genome-wide
significant (P < 5 × 10−8) variants in our multi-ancestry meta-analysis present in at
least 60% of Nmax (Nvariants= 20,076). To identify uncorrelated variants for PR
interval, DEPICT performed LD-clumping (r2= 0.1, window size= 250 kb) using
LD estimates between variants from the 1000 G reference data on individuals from
all ancestries after excluding the major histocompatibility complex region on
chromosome 6. Geneset enrichment analysis was conducted based on 14,461
predefined reconstituted gene sets from various databases and data types, including
Gene ontology, Kyoto encyclopedia of genes and genomes (KEGG), REACTOME,
phenotypic gene sets derived from the Mouse genetics initiative, and protein
molecular pathways derived from protein–protein interaction. Finally, tissue and
cell type enrichment analyses were performed based on expression information in
any of the 209 Medical Subject Heading (MeSH) annotations for the 37,427 human
Affymetrix HGU133a2.0 platform microarray probes.

IPA (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-
analysis/) was conducted using an extended list comprising 593 genes located in
regions defined by r2 > 0.5 with the lead or conditionally independent variants for
all PR interval loci, or the nearest gene. We further expanded this list by adding
genes indicated by gene expression analyses. Only molecules and/or relationships
for human or mouse or rat and experimentally verified results were considered.
The significance P value associated with enrichment of functional processes is
calculated using the right-tailed Fisher’s exact test by considering the number of
query molecules that participate in that function and the total number of molecules
that are known to be associated with that function in the IPA.

Associations between genetically determined PR interval and cardiovascular
conditions. We examined associations between genetic determinants of atrioven-
tricular conduction and candidate cardiovascular diseases in unrelated individuals
of European ancestry from UK Biobank (N~309,000 not included in our GWAS
meta-analyses) by creating PRSs for PR interval based on our GWAS results. We
derived two PRSs. One was derived from the European ancestry meta-analysis
results, and the other from the multi-ancestry meta-analysis results. We used the
LD-clumping feature in PLINK v1.9061 (r2= 0.1, window size= 250 kb, P= 5 × 10−8)
to select variants for each PRS. Referent LD structure was based on 1000 G Eur-
opean only, and all ancestry data. In total, we selected 582 and 743 variants from
European only and multi-ancestry meta-analysis results, respectively. We calcu-
lated the PRSs for PR interval by summing the dosage of PR interval prolonging
alleles weighted by the corresponding effect size from the meta-analysis results. A
total of 581 variants for the PRS derived from European results and 743 variants for
the PRS derived from multi-ancestry results (among the variants with imputation
quality >0.6) were included in our PRS calculations.

We selected candidate cardiovascular conditions a priori, which included
various cardiac conduction and structural traits such as bradyarrhythmia, AF,
atrioventricular pre-excitation, heart failure, cardiomyopathy, and congenital heart
disease. We ascertained disease status based on data from baseline interviews,
hospital diagnosis codes (ICD-9 and ICD-10), cause of death codes (ICD-10), and
operation codes. Details of individual selections and disease definitions are
described in Supplementary Data 23.
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We tested the PRSs for association with cardiovascular conditions using logistic
regression. We adjusted for enrolled age, sex, genotyping array, and phenotype-
related principal components of ancestry. Given correlation between traits, we set
significance threshold at P < 3.13 × 10−3 after Bonferroni correction (P < 0.05/16) for
the number of analyses performed and also report nominal associations (P < 0.05).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Summary GWAS statistics are publicly available on the Cardiovascular Disease
Knowledge portal (http://www.broadcvdi.org). All other data are contained in the article
file and its supplementary information or is available upon request.
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