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A B S T R A C T

Objectives: The extensively drug-resistant (XDR) Acinetobacter baumannii international clone VI (IC-6) has
been identified worldwide since 2006. This study reports the emergence of IC-6 in the Brazilian Amazon
region and reveals the particular genomic features considering its mobilome and resistome.
Methods: A total of 32 carbapenem-resistant A. baumannii strains recovered from Boa Vista city (Roraima,
Brazil) in 2016 were characterised by pulsed-field gel electrophoresis (PFGE) and multilocus sequence
typing (MLST). The whole genome sequences of the Brazilian IC-6 strains were obtained. The mobilome
and resistome were assessed by in silico analyses.
Results: PFGE and MLST demonstrated that the 32 A. baumannii strains belonged to four clones. One XDR
clone corresponded to the high-risk pandemic IC-6 lineage from ST944Oxf/78Pas. The IC-6 resistome was
composed of aadA5, aac(3ʹʹ)-IIa, aph(3ʹ)-Ia, armA, aadB, msrE, blaTEM-1, IS15DIV–blaCTX-M-115–IS15DIV,
blaOXA-90, ISAba1–blaADC-152, blaOXA-72, qacED1 and sul1. Mobilome prediction revealed that blaOXA-72 was
embedded in a 15.5-kb plasmid and that it was flanked by putative XerC/D-binding sites, possibly involved
in blaOXA-72 mobilisation. Several resistance genes were in a 48-kb multidrug resistance genomic island
inserted in the chromosome, which also harboured genes involved in host pathogenicity and adaptive
traits. Interestingly, the Brazilian strains shared the blaOXA-72 and blaCTX-M-115 with IC-6/ST944Oxf/78Pas

recovered in a distinct spatiotemporal context, pointing to an epidemiological link among them.
Conclusion: This study highlights the importance of surveillance of XDR A. baumannii strains, even outside
of densely populated cosmopolitan regions, to reveal the epidemiology of pandemic lineages, stressing
their threat to public health.
© 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Acinetobacter baumannii pandemic lineages, named interna-
tional clones, are spread across continents, causing outbreaks and
presenting multidrug-resistant phenotypes. International clone VI
(IC-6) belongs to the carbapenem-resistant A. baumannii ST944Oxf/
78Pas [Oxford/Pasteur multilocus sequence typing (MLST) scheme]
[1,2] and presents high biofilm-forming ability, increased resis-
tance to desiccation and an enhanced capacity for host cell
adhesion/invasion, favouring its diffusion and persistence [3].
* Corresponding author. Present address: Laboratório de Genética Molecular de
Microrganismos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.

E-mail address: ericafon@ioc.fiocruz.br (É.L. Fonseca).

https://doi.org/10.1016/j.jgar.2019.06.014
2213-7165/© 2019 International Society for Antimicrobial Chemotherapy. Published by
creativecommons.org/licenses/by-nc-nd/4.0/).
Since 2006, IC-6 has been identified in European countries (Italy,
Russia, Greece and Germany), Asia (Kuwait) and North and South
America (the USA and French Guiana) [1,4–9].

In the context of surveillance of carbapenem-resistant A.
baumannii infections in a hospital from the Brazilian Amazon
region, we verified the occurrence of the pandemic IC-6/ST944Oxf/
78Pas lineage and revealed particular genomic features considering
its mobilome and resistome.

2. Materials and methods

A total of 32 nosocomial carbapenem-resistant A. baumannii
strains were recovered from distinct inpatients, biological material
and wards of the General Hospital of Roraima (Boa Vista, Roraima,
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Table 1
Susceptibility profile of five Brazilian Acinetobacter baumannii from the interna-
tional clone VI (IC-6) lineage.

Antimicrobial agent MIC (mg/mL)a

Gentamicin �256
Amikacin �256
Tobramycin �1024
Imipenem �32
Meropenem �32
Doripenem 16
Ciprofloxacin �32
Ampicillin/sulbactam 32
Piperacillin/tazobactam �256
Ticarcillin/clavulanic acid �256
Cefotaxime �256
Ceftazidime �256
Cefepime �256
Trimethoprim/sulfamethoxazole �32
Tetracycline 1
Minocycline 0.75
Polymyxin B 1

MIC, minimum inhibitory concentration.
a MICs were determined by Etest, except for polymyxin B which were determined

by broth microdilution.
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Brazil) in 2016. Following identification using an automated
VITEK12 system, the species was confirmed by sequencing of 16S
rRNA and the blaOXA-51 gene, which is a genetic marker of this
species. The strains were genotyped by pulsed-field gel electro-
phoresis (PFGE) and MLST following the Oxford and Pasteur
schemes (https://pubmlst.org/abaumannii/) as described previ-
ously [1].

Antimicrobial susceptibility testing was performed by Etest
(bioMérieux, Marcy-l’Étoile, France) on Mueller–Hinton agar for
gentamicin, amikacin, tobramycin, imipenem, meropenem, doripe-
nem, ciprofloxacin, ampicillin/sulbactam, piperacillin/tazobactam
(TZP), ticarcillin/clavulanic acid, cefotaxime, ceftazidime, cefepime,
trimethoprim/sulfamethoxazole (SXT), tetracycline and minocy-
cline. The minimum inhibitory concentration (MIC) of polymyxin B
was assessed by the broth microdilution method with antibiotic
concentrations ranging from 0.1–64 mg/mL. Contemporary inter-
pretive criteria from the Clinical and Laboratory Standards Institute
(CLSI) were applied in all cases [10]. Carbapenemase production was
verified by the modified Hodge test.

Whole-genome sequencing was performed on an Illumina
HiSeq 2500 sequencer (Illumina Inc., San Diego, CA, USA) using a
Nextera XT paired-end run with a 500-bp insert library at the High-
Throughput Sequencing Platform of the Oswaldo Cruz Foundation
(FIOCRUZ, Rio de Janeiro, Brazil).

In silico antimicrobial resistance gene (ARG) prediction and
plasmid searches were performed using the Comprehensive
Antibiotic Resistance Database (CARD), plasmidSPAdes and Plas-
midFinder (https://cge.cbs.dtu.dk/services/). The plasmid topology
(linear or circular) was verified in silico as previously described
[11].

Genomic island prediction was assessed by IslandViewer web
server (http://www.pathogenomics.sfu.ca/islandviewer/) and GIP-
Sy software (http://www.bioinformatics.org/groups/?group-
id=1180http://www.bioinformatics.org/groups/?groupid=1180),
and insertion sequence (IS) elements were searched and classified
according to the ISfinder database (http://www-is.biotoul.fr).

3. Results and discussion

The PFGE profile demonstrated that the 32 A. baumannii strains
belonged to four clones: clone A (n = 5); clone B (n = 15); clone C
(n = 9); and clone D (n = 3). Clones B, C and D were assigned as new
STs by MLST. Interestingly, clone A belonged to ST944Oxf/78Pas,
which corresponds to the high-risk pandemic IC-6 lineage.

According to the current resistance definition criteria [12], all
five IC-6 strains presented an extensively drug-resistant (XDR)
phenotype since the strains were susceptible only to polymyxin B
and tetracyclines (tetracycline and minocycline) (Table 1). The
remaining 27 strains were resistant or multidrug-resistant [12],
with the highest resistance rates to meropenem, TZP and SXT.

To perform an in-depth characterisation of the Brazilian IC-6
strains, two strains were submitted to high-throughput sequenc-
ing. The genome sequences are found under the GenBank
accession nos. RJLV00000000 (AB4332) and RJLW00000000
(AB5375).

Resistome mining of the Brazilian IC-6 genomes identified
genes conferring resistance to aminoglycosides [aadA5, aac(3ʹʹ)-IIa,
aph(3ʹ)-Ia, armA and aadB], macrolides (msrE), β-lactams and
carbapenems (blaTEM-1, blaCTX-M-115, blaOXA-90, blaADC-152 and
blaOXA-72), disinfectant compounds (qacED1) and sulfonamides
(sul1) (Table 2).

The blaOXA-90 gene, identified in the same chromosomal region
both in strains AB4332 and AB5375, is a variant of the intrinsically-
encoded blaOXA-51 family, which is a genetic marker of A. baumannii
species. No ISAba sequence was found associated with this gene.
On the other hand, the blaADC-152 gene, also found in the
chromosome, was preceded by ISAba1 (Table 2). Curiously, this
allele presents amino acid substitutions (Asp220 and Gly320) that
have been previously demonstrated to be involved in extension of
the enzyme substrate specificity and acquisition of carbapenemase
activity [13]. Therefore, the cephalosporin and carbapenem
resistance observed in the Brazilian IC-6 strains can be also a
consequence of the overexpression of blaADC-152 driven by ISAba1
[14].

The blaCTX-M-115 gene was flanked by two IS15DIV elements
(Table 2). However, it was not possible to determine whether the
IS15DIV–blaCTX-M-115–IS15DIV was located on a plasmid or on the
chromosome since the assembled contigs were too small. IS15DIV
belongs to the IS6 family and has previously been identified
flanking the blaNDM-16 gene carried by a plasmid in a clinical
Escherichia coli strain [15] as well as upstream of blaCTX-M-15 in
Klebsiella pneumoniae clinical strains [16].

In silico analyses for plasmid prediction and topology
determination revealed that a 15.5-kb contig corresponded to a
circular plasmid carrying the conjugal transfer gene traA and the
virB6 gene as well as genes coding for the RelE/ParE toxin–
antitoxin system. Moreover, this plasmid harboured blaOXA-72,
which was not associated with any IS element. Interestingly, it was
previously demonstrated that blaOXA-72 contributes to carbapenem
resistance even in the absence of ISAba sequences [17–19].

Several studies have previously reported the presence of blaOXA-
72 in different plasmids, STs, Acinetobacter spp. and countries,
including Brazil [18–20]. These epidemiological data demonstrate
the mobilisation potential of blaOXA-72. The blaOXA-72 gene has been
associated with binding sites homologous to those recognised by
XerC/XerD recombinases [17,19,20], which could explain the
heterogeneity of genetic contexts (different plasmids) in which
blaOXA-72 has been found. In fact, the blaOXA-72 gene identified here
was flanked by the same XerC/XerD putative binding sites
previously reported in association with blaOXA-72 harboured by
an 8.9-kb plasmid found in an IC-2 strain recovered from Italy in
2004 [17].

Besides the plasmid carrying blaOXA-72, in silico mobilome
mining revealed the presence of a 48-kb multidrug resistance
genomic island (MDR GI) where the majority of the aforemen-
tioned ARGs were identified, including aadA5, aac(3ʹʹ)-IIa, aph(3ʹ)-
Ia, armA, aadB, msrE, blaTEM-1, qacED1 and sul1. Interestingly,
several of these ARGs were flanked by ISs, which could account for
their mobilisation and expression. This MDR GI, which was
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Table 2
Epidemiological, phenotypic and genotypic features of international clone VI (IC-6) ST944Oxf/78Pas Acinetobacter baumannii genomes.

Strain Isolation year Isolation data
(ward/hospital/country)

Isolate
source

MLST
(Oxford/Pasteur)

Antimicrobial resistance genes/mutations

AB4332a 16 Oct. 2016 TRM/HGR/Brazil Tracheal
secretion

ST944/78 blaOXA-90, blaOXA-72, IS15DIV–blaCTX-M-115–IS15DIV, ISAba1–blaADC-152, aadA5,
aac(3ʹʹ)-IIa, aph(3ʹ)-Ia, armA, aadB, msrE, blaTEM-1, qacED1, sul1, GyrA
(Ser83Leu), ParC (Ser80Leu)

AB5375a 29 Dec. 2016 ICU/HGR/Brazil Tracheal
secretion

ST944/78 blaOXA-90, blaOXA-72, IS15DIV–blaCTX-M-115–IS15DIV, ISAba1–blaADC-152, aadA5,
aac(3ʹʹ)-IIa, aph(3ʹ)-Ia, armA, aadB, msrE, blaTEM-1, qacED1, sul1, GyrA
(Ser83Leu), ParC (Ser80Leu)

AB3909 11 May 2007 Italy Bronchial
aspirate

ST944/78 aadB, sul1, aph(3ʹ)-Ia, blaOXA-90, ISAba1-blaADC-152, floR, blaOXA-58, ant(3ʹʹ)-II,
GyrA (Ser83Leu), ParC (Ser80Leu)

MLST, multilocus sequence typing; TRM, traumatology unit; HGR, General Hospital of Roraima; ICU, intensive care unit.
a Isolates from the current study.
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embedded in the chromosome, also harboured phage-related and
adhesion/biofilm formation genes (big-1 and bap) from the
intimin/invasin protein family, which are involved in host cell
attachment/invasion. Genes related to adaptive traits (mutT), DNA
repair (umuD), stress tolerance (nirD) and pathogenicity (mgtC, pilB
and peptidase-coding genes) were also present.

The genomic features of the unique Italian IC-6 genome (strain
3909 recovered in 2007) available in GenBank (accession no.
GCA_000189695.2) [1] was also assessed in order to compare it
with the Brazilian IC-6 genomes (recovered in 2016). They shared
the ARGs aadB, sul1, aph(3ʹ)-Ia, blaADC-152 and blaOXA-90 as well as
the adaptation-related mutT, nirD, mgtC, pilB and peptidase-coding
genes. Exceptions were umuD, blaOXA-72 and blaCTX-M-115, which
were exclusively found in IC-6 Brazilian genomes. In this case,
blaCTX-M-115 and blaOXA-72 could have been acquired by the Brazilian
IC-6 strains by mobilisation events mediated by IS15DIV and XerC/
D, respectively. Fluoroquinolone resistance-associated mutations
were also observed in GyrA (Ser83Leu) and ParC (Ser80Leu)
deduced proteins of Brazilian and Italian genomes (Table 2).

Spatiotemporal heterogeneity of the OXA-type genes in IC-6
strains identified in several countries since 2006 has been
observed. The blaOXA-58 gene characterised the ST944Oxf/78Pas

strains recovered between 2006–2010 in Italy [1], being posteri-
orly replaced by blaOXA-23 in that same country. This allele was the
same as identified among the IC-6 strains circulating in French
Guiana between 2008–2014 [9]. However, different from the IC-6
strains occurring in the aforementioned countries that harboured
blaOXA-58 or blaOXA-23, the OXA carbapenemase gene identified in
IC-6 from the USA (2009), Kuwait (2011–2012), Russia (2012–
2015), Germany (2013) and Greece (2015) [4–8] was blaOXA-72 from
the blaOXA-40-like/OXA-24-like family, as found in the Brazilian strains
described in the current study. The Brazilian strains also shared
blaCTX-M-115with IC-6/ST944Oxf/78Pas from Russia/Germany and the
USA [4,6,8]. However, the blaCTX-M-115 found in Brazil was
associated with IS15DIV, whilst in strains from Russia/Germany
it was associated with ISEcp1 [6]. Therefore, these results
altogether indicated that the Brazilian IC-6/ST944Oxf/78Pas strains
would have arisen due to gain/loss of mobile genetic elements
harbouring such ARGs.

This study revealed the emergence of the IC-6/ST944Oxf/78Pas in
a clinical setting of Boa Vista (Roraima, Brazil), which has been
persisting for �1 year. Interestingly, these Brazilian strains shared
the blaOXA-72 and blaCTX-M-115 genes with IC-6/ST944Oxf/78Pas

strains recovered in a distinct spatiotemporal context (USA,
2009; Russia, 2016) [4,6,8], which points to a direct epidemiologi-
cal link among them. Moreover, besides the XDR phenotype, the
Brazilian IC-6 strains presented genetic determinants related to
adaptive traits, adhesion and biofilm formation, which corrobo-
rates the high biofilm growth capability that characterises this
lineage and contributes to its spread and persistence globally [3].
Therefore, this study highlights the importance of epidemio-
logical surveillance of XDR A. baumannii strains even outside of
densely populated cosmopolitan regions in order to reveal the
dispersion/occurrence of such high-risk pandemic lineages owing
to their exceptional versatility and threat to public health.
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