Inflammusome Activation by CD8\(^+\) T Cells from Patients with Cutaneous Leishmaniasis Caused by *Leishmania bразiliensis* in the Immunopathogenesis of the Disease

TO THE EDITOR

Cutaneous leishmaniasis (CL) is characterized by an inflammatory response mainly mediated by CD4\(^+\) T cells producing IFN-\(\gamma\), which are responsible for macrophage activation and intracellular *Leishmania bразiliensis* parasite killing. We recently showed the importance of CD8\(^+\) T cells in the pathogenesis of human CL as skin lesions from patients with CL present higher frequencies of CD8\(^+\) T cells, contributing to the inflammatory response (Cardoso et al., 2015; Santos et al., 2013). Moreover, lesion size was found to positively correlate with the frequency of CD8\(^+\) T cells—expressing granzyme B. The cytotoxic response mediated by CD8\(^+\) T cells was not found to be linked to decreased parasite load in human macrophages infected in vitro (Cardoso et al., 2015; Santos et al., 2013).

Abbreviation: CL, cutaneous leishmaniasis

Accepted manuscript published online 13 June 2020; corrected proof published online 22 July 2020

\(\copyright\) 2020 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
Recently, some authors have stated that CD8+ T cells mediate tissue damage through the activation of NLRP3, leading to IL-1β secretion in L. braziliensis-infected mouse models and cells obtained from human CL skin lesions (Novais et al., 2017). Here, we evaluated the ability of CD8+ T cells to induce inflammasome expression and activation in cells from patients with CL and establish correlations with healing time. This study was approved by the Ethics and Research Committee from the Federal University of Bahia, Brazil, and the National Commission of Ethics in Research (39324114.0.0000.5577). All individuals were volunteer adults and provided written informed consent. A detailed description of the methods is presented in the Supplementary Materials and Methods.

Increased expression of NLRP3, AIM2, and CASP-1/5 was observed by qPCR in CL skin lesions compared with healthy skin samples (Figure 1a). Increased CASP-1/5 expression was also observed in PBMCs obtained from patients with CL stimulated with L. (Viannia) braziliensis after 6 and 12 hours of culture (Figure 1b). To determine the role of CD8+ T cells in increased inflammasome expression, these cells were cocultured with L. braziliensis–infected macrophages. After 12 hours of coculture, increased expression of NLRP3, AIM2, and CASP-1/5 was observed compared with
uninfected cell cultures (Figure 1c). The activation of these molecules contributes to the pathophysiology of several diseases, including leishmaniasis (Ferraz et al., 2015; Hyman and Yuan, 2012; Novais et al., 2015; Santos et al., 2018). CASP-1 is responsible for converting proinflammatory cytokines, such as IL-1β and IL-18, into their mature and active form, thereby favoring cytokine release and inflammation (Howard et al., 1997; Place and Kanneganti, 2018). Our results showed elevated expression of inflammasome components NLRP3 and AIM2 in patients with CL skin lesions, which could explain the upregulation of inflammatory CASP genes observed herein. Concurrently, some reports have described NLR activation by different species of Leishmania in vitro and in vivo (Charmoy et al., 2016; Lima-Junior et al., 2013; Santos et al., 2018).

To validate our expression data, IL-1β and CASP-1 levels were measured in biopsied cell cultures for 12 hours. Increased production of IL-1β (Figure 2a) and CASP-1 (Figure 2b) was seen in the supernatant of CL biopsy cultures compared with that of healthy controls. To confirm our results regarding inflammasome activation by CD8+ T cells, L. braziliensis–infected macrophages were cocultured with CD8+ T cells from patients with CL for 12 hours, followed by the assessment of IL-1β and CASP-1 secretion. We found increased levels of IL-1β and CASP-1 in autologous cocultures (CD8+ T cells + macrophages from patients with CL) in contrast to cocultured uninfected macrophages (Figures 2c–d). In addition, L. braziliensis–infected macrophages alone (Figures 2g–h) or those cocultured with CD4+ T cells did not induce CASP-1 or IL-1β secretion compared with cocultured uninfected macrophages (Figures 2e–f).

It is well-known that during the cytolytic process, CD8+ T cells release perforin and granzyme-mediating apoptosis in target cells (Li et al., 2014). Accordingly, we hypothesized that perforin released by activated CD8+ T cells binds to the surface of target cells, triggering potassium ion imbalance, thereby leading to inflammasome activation. To test this, we inhibited granzyme B and perforin during the coculturing of L. braziliensis–infected macrophages and CD8+ T cells or added a hyperosmotic medium containing 50 μM potassium chloride or sodium chloride. The inhibition of granzyme B and perforin reduced active CASP-1 secretion.

Figure 2. IL-1β and CASP-1 produced in macrophage and/or CD8+ T coculture from patients correlates with healing time. (a) IL-1β and (b) CASP-1 were measured by ELISA after 72 h of biopsy cultures. (c, e) IL-1β and (d, f) CASP-1 from macrophage and/or CD8+ or CD4+ T-cell cocultures were measured by ELISA. CD8+ or CD4+ T cells were purified from PBMCs of patients with CL and cocultured with uninfected or infected macrophages for (c–f). 12 h. (g) Active CASP-1 secretion and (h) intracellular active CASP-1 (FLICA) measured in autologous cocultures from patients with CL for 12 h after Leishmania (V.) braziliensis stimulation in the presence of (g, h) granzyme B and/or perforin inhibitors and (h) KCl or NaCl hyperosmotic medium. Relationship between (i) IL-1β and healing time Pearson’s r = 0.5334 as well as (j) CASP-1 and time healing Pearson’s r = 0.7267. aGZB, anti-granzyme B; aPerf, anti-perforin; CL, cutaneous leishmaniasis; h, hour; HC, healthy control; KCl, potassium chloride; NaCl, sodium chloride; zVAD, carboxbenzoxyl-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone.
levels and YVAD-FLICA—positive cells during infected macrophages and CD8+ T-cell cocultures (Figures 2g–h). This reduction suggested that CD8+ T cells may induce potassium efflux and, consequently, inflammasome activation. In contrast, in cocultures of CD4+ T cells and infected macrophages, no significant differences were found in CASP-1 and IL-1β production.

In addition, increases in extracellular potassium ion by potassium chloride were shown to reduce the activation of CASP-1 in CD14+ cells (Figure 2h). These results indirectly suggest that the cytolytic process in the membranes of target cells caused by perforin do indeed induce a potassium ion efflux. Potassium efflux is a remarkable signal involved in the activation of the NLRP3 inflammasome and inflammatory caspases (Muñoz-Planillo et al., 2013).

Recent work described the value of inflammasome platforms in predicting treatment outcome in CL (Amorim et al., 2019). To investigate whether CASP-1 and IL-1β production could be related to poor disease prognosis, we correlated the production of these proteins in the supernatant of infected macrophage and CD8+ T-cell cocultures with the healing time of each patient. CASP-1 but not IL-1β production presented a positive correlation with healing time (Figures 2i and j). The fact that CASP-1 secretion is linked to healing time supports the role of CD8+—dependent inflammasome activation in worsening CL outcomes. Indeed, recent work demonstrates that patients presenting the higher expression of genes associated with cytotoxic T cells presented a poorer response to treatment in the healing of CL lesions (Amorim et al., 2019).

This study investigated the role of CD8+ T cells obtained from patients with CL in the activation of the inflammasome pathway. The increased inflammasome component expression observed in patients with CL indicates that this process may be related to tissue damage (Santos et al., 2018). Recent reports have highlighted the modulation of inflammasome activation as a possible target for treating tissue injury in this disease (Carvalho et al., 2020). Further studies will be crucial in determining methods of modulating the inflammasome to design therapeutic targets against CL.

Data availability statement
No datasets were generated or analyzed during this study.

ORCIDs
Thiago Marconi Cardoso: http://orcid.org/0000-0002-0074-9789
Jonilson B. Lima: http://orcid.org/0000-0002-1403-4768
Icaro Bonyek-Silva: http://orcid.org/0000-0002-0346-9160
Sara Nunes: http://orcid.org/0000-0001-8546-7598
Daniel Feijó: http://orcid.org/0000-0002-3552-8847
Hugo Almeida: http://orcid.org/0000-0002-6584-228X
Juliana Silva: http://orcid.org/0000-0002-5546-092X
Aldina Barral: http://orcid.org/0000-0002-7177-464X
Viviane Boaventura: http://orcid.org/0000-0002-7241-6844
Valéria M. Borges: http://orcid.org/0000-0002-2775-5409
Dario S. Zamboni: http://orcid.org/0000-0002-7856-7512
Lucas Pedreira de Carvalho: http://orcid.org/0000-0001-5033-1666
Edgar M. Carvalho: http://orcid.org/0000-0002-97-8002
Natalia M. Tavares: http://orcid.org/0000-0002-4026-679X
Cláudia Brodsky: http://orcid.org/0000-0003-3367-5365

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
This study was funded by Fundação de Apoio a Pesquisa do Estado da Bahia (FAPESB), Bahia, Brazil, grant number 05/2015 and Conselho Nacional de Pesquisa (CNPq) grant number 401379/2014-0. DF received a CNPq fellowship (BRT, 2014), and HA received a CNPq fellowship for undergraduate students. AB, VMB, EMC, LPC, DSZ, and CB are senior investigators of CNPq.

AUTHOR CONTRIBUTIONS
Conceptualization: TMC, JBL, CB; Data Curation: TMC, NMT, CB; Formal Analysis: TMC, NMT, CB; Funding Acquisition: DF, CB; Investigation: TMC, IBS, SN, DF, HA, JBL; Methodology: TMC, JBL, DF, HA, JS; Project Administration: CB; Resources: AB, VB, VMB, DSZ, LPC, EMC, CB; Supervision: CB; Validation: TMC, NMT, CB; Visualization: TMC, JBL, NMT, CB; Writing - Original Draft Preparation: JBL, CB; Writing - Review and Editing: JBL, NMT, CB

Thiago Marconi Cardoso1,2,3, Jonilson B. Lima4, Icaro Bonyek-Silva4,5, Sara Nunes1,5, Daniel Feijó6, Hugo Almeida1, Juliana Silva2, Aldina Barral1,6, Viviane Boaventura1,5, Valéria M. Borges1, Dario S. Zamboni3, Lucas Pedreira de Carvalho1, Edgar M. Carvalho1,2,3, Natalia M. Tavares1,5,6, and Cláudia Brodsky1,5,6, *

1 Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; 2 Serviço de Imunologia, Hospital Universitário Prof Edgar Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; 3 Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), Salvador, Bahia, Brazil; 4 Centro de Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia (UFOB); 5 Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil; 6 Instituto Nacional de Ciência e Tecnologia de Instituto de Investigação de Imunologia (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), São Paulo, Brazil; and 7 Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil

* Corresponding author e-mail: claudia.brodsky@fiocruz.br

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2020.05.106.

REFERENCES
Diagnostic Two-Gene Classifier in Early-Stage Mycosis Fungoides: A Retrospective Multicenter Study

TO THE EDITOR

Although mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma, it still poses a major diagnostic challenge because of clinical and histological similarities to benign inflammatory dermatosis (BID), resulting in prolonged diagnostic workup (Scarisbrick et al., 2019). Algorithms based on clinical, morphological, immunophenotypical, and molecular parameters have added to diagnostic accuracy in early-stage disease (Pimpinelli et al., 2005). In addition, TOX, PDCD1, CADM1, BLK, and genes related to the TNF signaling pathway have been reported as potential diagnostic markers (Krejsgaard et al., 2009; Litvinov et al., 2017; Tracey et al., 2003; Yuki et al., 2018; Zhang et al., 2012). Decades of research have provided considerable evidence on the interaction between malignant T cells and benign immune and stromal cells, inhibiting antitumor responses while promoting tumor cell growth through the inflammatory microenvironment produced by the neoplastic cells and thereby driving the stage-related inflammation characteristic of MF (Krejsgaard et al., 2017).

Only a few studies have investigated the role of the innate immune cells (Cioplea et al., 2019). To this end, we performed gene expression analysis with emphasis on the innate immune system on 43 initial diagnostic biopsies from 36 patients with early-MF (≤ⅡA) and 47 controls (13 healthy skin, 35 BID) (Supplementary Table S1) using the NanoString nCounter Human Myeloid Innate Immunity Panel v2 spiked with 30 customized genes (Supplementary Materials and Methods; Supplementary Table S2). Patients were included using conventional clinical and histopathological criteria. Patient consent for experiments was not required because retrospective studies are exempted according to Danish laws. Based on the 535 most differentially expressed genes (\(\Delta/\Delta_{\text{max}} > 0.2 \)), an overall good separation of early-MF from BID (Supplementary Figure S1a) was observed. A direct comparison of early-MF and BID (\(t\)-test: fold change > 3 and \(P < 0.01 \)) identified 45 differentially expressed genes, of which all except one (SAA1) were highly expressed in early-MF compared with BID. Based on these

Abbreviations: BID, benign inflammatory dermatosis; early-MF, early-stage mycosis fungoides; MF, mycosis fungoides

Accepted manuscript published online 23 May 2020; corrected proof published online 15 July 2020 © 2020 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
SUPPLEMENTARY MATERIALS AND METHODS

Study subjects and skin samples
Patient enrollment was performed in epidemic areas in the municipalities of Corte de Pedra and Jequiára, located in the state of Bahia (Brazil). Patients with cutaneous leishmaniasis (CL) presented typical ulcerative skin lesions, and diagnoses were made on the basis of parasite detection by culture aspirate histopathology or the presence of a typical CL lesion plus leishmanin skin test positivity. Blood and tissue specimens were obtained before patients received treatment with antimonials-N-methyl-glucantime. Biopsies were obtained from the borders of skin lesions of patients with CL (n = 10), and skin samples were collected from healthy subjects (n = 7) submitted to elective plastic surgery.

PBMCs and monocyte-derived macrophages
PBMCs were isolated using Ficoll-Hypaque gradients (GE Healthcare, Uppsala, Sweden). PBMC fractions were collected and washed twice with 1 × PBS at 300g for 10 minutes. A representative portion of these cells was labeled with APC-conjugated mAb z-CD14 (clone 61D3) (Sigma Aldrich, St. Louis, MO). Flow cytometry was employed to determine monocyte frequency in each sample and adjusted to 1 × 10⁶ CD14+ cells per well to obtain differentiated macrophages at identical proportions. For macrophage differentiation, cells were incubated at 37 °C under 5% carbon dioxide for 2 hours to achieve adhesion. Then, PBMCs were washed to remove any nonadherent cells and maintained in culture with complete RPMI (supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.1 mM nonessential amino acids) for 7 days to induce macrophage differentiation.

Macrophage-infected CD8+ and CD4+ T-cell cocultures
Leishmania (Viannia) braziliensis (strain Ba788) promastigotes were cultured in Schneider’s Insect medium (Sigma Aldrich) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, and 10 μg/ml streptomycin. Cultured macrophages from patients with CL and healthy subjects were infected with L. braziliensis (1:10 macrophage-to-promastigote ratio). After 2 hours of infection, cells were washed to remove any noninternalized promastigotes, followed by coculturing with CD8+ and CD4+ T cells (5:1 cell-to-macrophage ratio) for variable durations as indicated in figure legends. CD8+ and CD4+ T-cell isolation was performed in PBMCs using a magnetic bead system (Dynabeads Untouched Human CD8+ T Cells and Untouched Human CD4+ T Cells Dynabeads) in accordance with manufacturer’s instructions.

Reagents and culturing protocol
The reagent 3,4-dichloroisocumarin (Sigma Aldrich) was used as a pharmacological inhibitor of granzyme B. The neutralizing antibody (clone δG9) was used to block perforin. In order to confirm inflammasome activation caused by the influx of potassium, a complete RPMI medium with a high concentration of potassium chloride (50 μM) was used for inhibition purposes, with sodium chloride employed as a negative control.

Real-Time qPCR
Total RNA was extracted from skin lesions and cell cultures was extracted using an miRNeasy Mini Kit (Qiagen, Hilden, Germany). Reverse transcription was performed to synthesize cDNA using 0.5 μg of total RNA, M-MLV reverse transcriptase, and random primers (Invitrogen, Carlsbad, CA). Relative qPCR reactions were performed (StepOnePlus AB, Applied Biosystems, Foster City, CA) on 96-well microtiter plates using SYBR Green Master Mix (Applied Biosystems). Forward and reverse primer sequences are: for Caspase 1 forward (5'-GCTGAGGTTGACATCACAGGCA-3') reverse (5'-TGTGTCAGAGGTCTTGTGCTC-3'); Caspase 5 forward (5'-TGTAAGACGGCAGCGATGTAAC-3') reverse (5'-CTCTCAATGAGTGGTACCA-3'); NLRP-3 forward (5'-CAGAAACAGCTATGCACC-3') reverse (5'-CAACAAGACTTGAACACA-3'); IL-1α forward (5'-GAGGATTCGAAACACCTAGTCACC-3') reverse (5'-GCTTCTTCCGTCGATCAACA-3'); IL-1β forward (5'-GGGATTCGAAACACCTAGTCACC-3') reverse (5'-GAATCAGACTTTGAAACACTATGCCACC-3'); APRIL forward (5'-CTCTCAATGAGTGGTACCA-3') reverse (5'-CTCTCAATGAGTGGTACCA-3'); NLRP-3 forward (5'-GCTTCTTCCGTCGATCAACA-3') reverse (5'-GCTTCTTCCGTCGATCAACA-3'). All primers were purchased from Applied Biosystems. Samples were amplified in duplicate, and relative expression was calculated as mean comparative computer tomography method for each gene using StepOne Software v2.0.2 (Applied Biosystems). β-actin gene was used as an internal control. All reagents were used in accordance with the manufacturer’s recommendations.

IL-1β and active CASP1 quantification
To measure cytokine production in cocultures, supernatants were collected after 12 hours of culturing. IL-1β (Human IL-1β) and/or IL-1F2 DuoSet ELISA Development System; R&D Systems, Minneapolis, MI) and active CASP1 (Human CASP-1/ICE Quantikine ELISA Kit; R&D Systems) concentrations were determined by ELISA sandwich assays in accordance with the manufacturer’s instructions. IL-1 β and CASP1 were measured in the supernatants of patients with CL biopsy cultures after 72 hours of incubation, as previously described by Santos et al. (2018). Briefly, biopsy samples were cultured in complete RPMI media without stimuli at 37 °C, 5% carbon dioxide for 72 hours. Supernatants were collected and stored at −70 °C until the time of analysis by ELISA (R&D Systems) in accordance with the manufacturer’s instructions.

Macrophage FAM-FLICA assay
After 12 hours of coculturing, cells were stained with FAM-FLICA FITC reagents in accordance with manufacturer’s instructions to determine CASP-1 activation in infected M0 (iM0) and M0 (FAM-FLICA Caspase-1 Assay Kit, Immunochemistry Technologies, Bloomington, MN). In addition, cells were labeled with phycoerythrin anti-human CD3 mouse antibody (clone SP34-2), phycoerythrin-Cy5—conjugated mAb anti-CD8 (clone RPA-T8), and APC-conjugated mAb anti-CD14 (clone 61D3) (Sigma Aldrich). A total of 105 gated events from each sample were acquired on a FACS Canto II cytometer (BD-Bioscience Pharmingen, San Jose, CA) and analyzed using FlowJo TreeStar software.

Statistical analysis
To analyze relative gene expression in skin lesions and PBMC cultures and cocultures, Mann–Whitney U test was used. The Mann–Whitney U test was also used to assess differences in IL-1β.
and active CASP-1 production by ELISA in all experiments. Comparison of CASP-1 and FLICA positive cells of multiple groups in the presence or absence of different inhibitors were analyzed by Kruskal–Wallis test, followed by Dunn’s multiple comparisons post-test. Pearson’s coefficient testing was performed to assess correlations between patients with CL healing time and CASP-1 or IL-1\(\beta\) production. All statistical analyses were performed using GraphPad Prism 8.0 software (GraphPad Software, San Diego, CA). \(P\)-values < 0.05 were considered significant.