Trypanosoma cruzi Adjuvants Potentiate T Cell-Mediated Immunity Induced by a NY-ESO-1 Based Antitumor Vaccine

Caroline Junqueira¹,², Ana Tereza Guerrero³, Bruno Galvão-Filho¹,², Warrisson A. Andrade¹,², Ana Paula C. Salgado¹, Thiago M. Cunha⁵, Catherine Ropert¹, Marco Antônio Campos¹, Marcus L. O. Penalvo², Lúcia Mendonça-Previanto⁶, José Oswaldo Previanto⁶, Gerd Ritter⁷, Fernando Q. Cunha⁸, Ricardo T. Gazzinelli¹,²,⁴.

¹Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil, ²Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, ³Instituto Cerrado Pananal, Fundação Oswaldo Cruz, Campo Grande, Brazil, ⁴Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, ⁵Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil, ⁶Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, ⁷Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America.

Abstract

Immunological adjuvants that induce T cell-mediated immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpG oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR4 and TLR5, respectively). Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4⁺ T and CD8⁺ T cell responses. In particular, both GIPLs (GT4 and GY4) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4⁺ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8⁺ T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4⁺ T and CD8⁺ T cell responses elicited by a specific immunological adjuvant.

Introduction

NY-ESO-1 is a human cancer/testis antigen that is frequently expressed in a variety of cancer cells, but not in normal adult tissues apart from testis [1,2]. Both humoral and T cell-mediated immunity (TCMI) specific for NY-ESO-1 develop in patients with NY-ESO-1-positive tumors; and several major histocompatibility complex (MHC) class II and T restricted epitopes have been defined as the epitopes recognized by CD4⁺ T as well as CD8⁺ T lymphocytes, respectively [3,4,5]. The immunogenicity and tissue distribution indicate that NY-ESO-1 is an excellent candidate antigen for prophylactic and therapeutic anticancer vaccines. Hence, different vaccine formulations employing NY-ESO-1 have been developed aiming at efficient antitumor activity. Most formulations combine heterologous prime-boost protocols to achieve satisfactory immunogenicity and tumor regression in experimental models [6,7]. Importantly, different clinical trials have shown the ability of NY-ESO-1 vaccines to induce specific cytolytic T lymphocytes as well as CD4⁺ T cell-mediated immune responses in humans [8,9].

However, the quality of the T cell response and protection against tumors still remains a major challenge for vaccine development. One of the main difficulties is the limited availability of licensed immunological adjuvants that induce strong and long-lasting TCMI with the least undesirable effect. The discovery that activation of Toll-Like Receptors (TLR) promote the initiation and development of both T cell and B cell responses has intensified the search for new immunological adjuvants [10]. Indeed, various
microbial components as well as synthetic components previously shown to work as immunological adjuvants were proven to be TLR agonists [11]. When exposed to microbial components, cells from the innate immune system, synthesize high levels of pro-inflammatory cytokines and express co-receptors, in order to initiate the activation process of naïve T cells, bridging the innate and acquired immunity [12]. Importantly, dendritic cell (DCs) activated with TLR agonists will produce interleukin (IL)-12 and influence the differentiation of CD4+ T cells into the T helper type 1 (Th1) phenotype, which orchestrates the establishment of cell-mediated immunity as well as the production of interferon-gamma (IFN-γ)-inducible Ig isotypes that are often involved in host resistance to tumors [13,14,15]. Furthermore, activation of antigen presenting cells favors cross-presentation, allowing presentation of exogenous antigens via MHC class I [16,17]. Currently, several vaccines based on association of tumor antigens with defined TLR agonists (e.g., Poly IC, Monophosphoryl Lipid A, Flagellin, CpG oligodeoxynucleotides, Influenzovax) are being tested in pre-clinical and clinical trials [15,18,19].

We have previously shown that glycosphatidylinositol (GPI) anchors linked to murin-like glycoproteins, and the ceramide-containing GPI anchors, also termed glycosylphosphatidylinositol (GPI), present in outer plasma membrane of the Trichomonas vaginalis are immunostimulatory molecules for TLR2 and TLR4, respectively [20,21]. It was also demonstrated that CpG oligodeoxynucleotide (CpG ODN) motifs derived from the T. cruzi genome activate TLR9 [22]. We believe that this is the molecular basis of the highly polarized Th1 response and strong TCMt elicited during infection with T. cruzi parasites.

In this study, we evaluated the T. cruzi derived TLR agonists as immunological adjuvants in vaccine formulations employing ovalbumin (OVA) or NY-ESO-1 as antigens. Our results show that formulations containing either CpG ODNs or GPI induced immune responses mediated by CD4+ Th1 lymphocytes. In particular, parasite derived CpG ODNs, but not GPI, elicited a potent IFN-γ response by CD8+ T lymphocytes. We also evaluated adjuvant-induced hypercoagulation and showed that there was no correlation with the quality of the immune response, and alum was the main cause of “pain” in the vaccine formulations. Immune-mediated protection against melanoma development directly correlated with the magnitude of IFN-γ responses by both NY-ESO-1-specific CD8+ T as well as CD4+ T cells. Finally, the use of the analgesic Parecetamol (PCM) did not alter the immunogenicity and protective immunity elicited by these novel vaccine formulations employing parasite adjuvants.

Materials and Methods

Ethics Statement

Mice experiments were approved by and conducted according to animal welfare guidelines of the Ethics Committee of Animal Experimentation from Universidade Federal de Minas Gerais under the title “Parasite derived adjuvants for cancer vaccines” and approved protocol number 10/2009.

Mice and cell lines

C57BL/6 mice, originally obtained from Jackson Laboratory, were kept under standard pathogen-free conditions. Six- to eight-week-old females, weight-matched, were used in the different experimental groups. CHO transfected cells [23] and B16F10 wild type (WT) and NY-ESO-1-transfected [24] cell lines were maintained in culture in RPMI 1640 supplemented with 100 U/ml penicillin, 10 μg/ml streptomycin, 10% heat-inactivated fetal bovine serum (FBS), 1 μg/ml tylosin and maintained at 37°C in a 5% CO2 incubator. B16F10 cell line expressing NY-ESO-1 were supplemented with 500 μg/ml gentamicin.

Removal of lipopolysaccharides from ovalbumin

Chicken OVA (Sigma-Aldrich, St. Louis, MO) was diluted in pyrogen-free saline at 10 mg/ml and depleted of the endotoxin activity using five cycles of Trixon X-114 extractions [25]. OVA concentration was determined by Bradford assay, and adjusted to 1 mg/ml. The endotoxin levels in purified OVA were measured by Gel-Clot Limulus amoebocyte lysate reagent (Charles River Laboratories, Wilmington, MA) and found to be below the limit of detection (0.03 EU/ml).

NY-ESO-1: recombinant protein and T cell epitope mapping

The recombinant NY-ESO-1 protein was produced under Good Manufacturing Practice (GMP), at the Ludwig Institute for Cancer Research/Cornell University Partnership Production Facility in Ithaca, New York.

In silico prediction of MHC class I (H2-Kb, H2-Dd and H2-Ld) and class II (H2-Ld) ligands from NY-ESO-1 were determined by the software Bimab [26] and SYFPEITHI [27], respectively. The MHC restricted peptides from Ovalbumin (OVA CD1t) T cell epitope - SQKVVAAHAEINAGR and OVA CD8t T cell epitope - SMNEXTLKD and the restricted peptides from NY-ESO-1 (NY-ESO-1 CD1t) T cell epitopes: CD1t-1 QAERGRTTGSGTG- NAN, CD1t-2 AGPGEAGTGGGRP, and CD1t-3 FYLAMP- FATPMAGEL, as well as NY-ESO-1 CD8t T cell epitopes: CD8-1 TV5GNILTH, CD8-2 SLOIQQSSL, and CD8-3 LEEFILAM were synthesized by standard N-hydroxysulfosuccinamyl on a PSSMB multipurpose peptide synthesizer (Shimadzu, Kyoto, Japan) by solid-phase synthesis with a scale of 30 μmol and a purity >85%, as determined by reverse-phase HPLC. Their identities were confirmed by Autospec III Multi TOF/TOF Mass Spectrometer (Bruker Daltonics, Billerica, MA). For in vitro lymphocytes restimulation, each peptide was used at 10 μM final concentration.

T. cruzi GPIs: purification and in vitro immunostimulation

The isolation and purification of GIPI has been previously described in detail [23,20]. Briefly, epimastigotes of T. cruzi (Y and Tulahuen strains) were grown in BH-humain medium supplemented with 5% FBS. T. cruzi in stationary growth phase were extracted three times with cold water and the remaining cell pellet extracted with 45% aqueous phenol. The aqueous layer from the phenol extraction was dialyzed and applied to a column of Bio-Gel P-100 (Bio-Rad, Hercules, CA). The excluded material was lyophilized and the free GPIs extracted by chloroform/methanol/water (10:10:3). The virtual absence of contaminating peptic material was confirmed by the absence of the peptide-derived signals in nuclear magnetic resonance spectroscopy and mass spectrometry analyses of the purified material. The GIPI preparation tested negative for Lipo polysaccharides (LPS) content using a Limulus amebocyte lysate test, with a limit of detection of 0.03 EU/ml (Charles River Laboratories, Wilmington, MA).

The CHO reporter cell lines (CHO/CD14; expressing endogenous functional TLR4; 7.19/GD14/TLR2, expressing TLR2; and the 7.19 clone, expressing neither TLR2 nor functional TLR4) were generated as described [23]. These cell lines contain a human CD25 gene reporter under the control of E-selectin promoter and CD25 expression is completely dependent upon NF-kB translocation. Macrophage-activating lipopeptide
2 kDa (MALP-2, Alexis Biochemicals, San Diego, CA) and LPS (Sigma-Aldrich, St. Louis, MO) were used as controls at 10 ng/ml and 200 ng/ml, respectively. TLR4⁺ cells that showed activation were additionally treated 15 min with 1 μg/ml of polymyxin B (Sigma-Aldrich, St. Louis, MO), an inhibitor of LPS, prior to GPIs exposure. Cells were exposed to the different molecules, and analyzed 18 hours after stimulation, through staining with PE-CD25 (CalTag Laboratories, Burlingame, CA) and flow cytometry analyzes by BD CellQuest Pro Software (Becton, Dickinson and Company, Franklin Lakes, NJ). The results were obtained by subtracting the percentage of cells expressing the reporter gene in stimulated versus non-stimulated cell populations. Ten thousand cells were analyzed in each sample.

CpG ODN: sequences and in vitro immunostimulation

Table 1 shows the sequences of mouse B-class-like CpG ODNs, mouse-human hybrid B class-like CpG ODNs and human B-class-like CpG ODNs derived from *T. congolense* genome [22]. *T. congolense* derived CpG ODNs, as well as positive and negative controls for CpG ODNs were synthesized by Alpha DNA (Montreal, Quebec, Canada) as phosphorothioate ODNs and purified by oligonucleotide-purification cartridge.

For IL-12 production assays, inflammatory macrophages from mice injected with 1.5 ml of 3% thioglycerol were plated at 10⁶ cells/ml, and incubated at 37°C and 5% CO₂ for 72 h in the presence or absence of LPS or CpG ODNs at different concentrations. IL-12 concentrations were determined in cell culture supernatant with DuoSet ELISA (R&D Systems, Minneapolis, MN). Two hundred thousand peripheral blood mononuclear cells (PBMCs) were cultured in 96-well plates in the presence of CpG ODNs at different concentrations associated with DOTA (Roche, Indianapolis, IN) for 24 h, and interferon-alpha (IFN-α) was measured in the cell culture supernatant with DuoSet ELISA (R&D Systems, Minneapolis, MN).

Vaccine formulations and immunization protocols

Vaccine formulations were prepared with 10 mg/ml OVA or 5 mg/ml NY-ESO-1 and TLR agonists co-adSORbed in 50% (v/v) of alum Rehydragel L.V. solution (Rheins, Berkeley Heights, NJ) for 1 hour at room temperature in a tube rotator. After incubation, saline solution was added to each sample to the final concentration of 100 μg/ml of the antigen. The final concentration of each agonist was used as follow: 10 μg/ml Synthetic MPLA (InvivoGen, San Diego, CA), 10 μg/ml Pam3CSK4 (Alexis Biochemicals, San Diego, CA); 180 μg/ml CpG (positive control (+)), negative control (−), or *T. congolense* derived B341, B297, B128; 500 μg/ml GIPL (TG:Y or TG:GTH). All the procedures were developed using endotoxin free supplies in a sterile environment.

Four to six mice per group were immunized with alum, alum plus OVA or alum plus OVA plus TLR agonists. Each mouse received three subcutaneous (s.c.) doses of vaccine formulations 14 days apart. Sera were collected 9 days after the last immunization and spleens were collected 12 days later for analysis of immune responses. Mice that were immunized with NY-ESO-1 received only two immunizations 21 days apart. In parallel, a group of mice were treated with 10 mg/kg of PCM by the oral route 30 minutes prior to each immunization dose.

Measurement of antibody and T cell responses

Vaccinated mice were bled from the retro-orbital plexus under ether anesthesia. Antigen-specific antibodies were measured in sera from immunized mice by enzyme-linked immunosorbent assay (ELISA). Secondary Ab, peroxidase-conjugated goat anti-mouse total Immunoglobulin G (IgG), IgG1 or IgG2c (SouthernBiotech, Birmingham, AL) were used and the reactions were detected with 3,3',5,5'-tetramethoxybenzidine reagent (Sigma-Aldrich, St. Louis, MO).

For IFN-γ production assays, splenocytes from vaccinated mice were prepared in complete RPMI supplemented with 100 U/ml rIL-2 (R&D Systems, Minneapolis, MN), plated at 10⁶ cells/ml and incubated at 37°C and 5% CO₂ for 72 h in the presence or absence of epitopes derived from OVA or NY-ESO-1 proteins. IFN-γ concentrations were determined in cell culture supernatant with DuoSet ELISA (R&D Systems, Minneapolis, MN). To confirm peptides specificity, CD8⁺ T and CD4⁺ T cells were isolated from total splenocytes using Dynabeads (Invitrogen,Dural, Oslo, Norway), and plated at 10⁵ cells/ml for peptide addition. Total splenocyte from vaccinated mice were stained ex vivo with FITC CD3 (BD Pharmingen, San Jose, CA) and PE-Cy5 CD8 (BD Pharmingen, San Jose, CA) antibodies as well as PE H2-Db (BD Pharmingen, San Jose, CA) antibodies for the evaluation of mechanical hypomocireption

Evaluation of mechanical hypomocireption

The term hypomocireption is used herein to mean either hypalgesia or allodynia and is used to define the decrease in nociceptive withdrawal threshold [29]. Mechanical hypomocireption was tested in mice as previously reported [30]. In a quiet room, mice were placed in acrylic cages (126 x 106 x 17 cm) with wire grid floors, 15–30 min before the start of testing. The test consisted of evoking a hindpaw flexion reflex with a handheld force transducer (electronic aesthesiometer; IITC Life Science, Woodland Hills, CA) adapted

<table>
<thead>
<tr>
<th>Table 1. Sequences of synthesized CpG oligonucleotide.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>E-class-616</td>
</tr>
<tr>
<td>E-class-344</td>
</tr>
<tr>
<td>E-class-207</td>
</tr>
<tr>
<td>E-class-377</td>
</tr>
<tr>
<td>E-class-181</td>
</tr>
<tr>
<td>E-class-145</td>
</tr>
<tr>
<td>E-class-134</td>
</tr>
<tr>
<td>E-class-130</td>
</tr>
<tr>
<td>E-class-128</td>
</tr>
<tr>
<td>E-class-126</td>
</tr>
<tr>
<td>E-class-114</td>
</tr>
<tr>
<td>E-class-110</td>
</tr>
<tr>
<td>E-class-10</td>
</tr>
<tr>
<td>E-class-189</td>
</tr>
<tr>
<td>E-class-140</td>
</tr>
<tr>
<td>E-class-599</td>
</tr>
<tr>
<td>E-class-338</td>
</tr>
<tr>
<td>E-class-278</td>
</tr>
<tr>
<td>E-class-190</td>
</tr>
<tr>
<td>E-class-220</td>
</tr>
<tr>
<td>CpG-7006 [Cpg(+)]*</td>
</tr>
<tr>
<td>CpG-130 [Cpg(−)]</td>
</tr>
<tr>
<td>CpG-2007</td>
</tr>
</tbody>
</table>

*CpG ODNs used for immunization protocols. doi:10.1371/journal.pone.0036254.s001
with a 0.5-mm² polypropylene tip. The investigator was trained to apply the tip perpendicularly to the central area of the plantar hindpaw with a gradual increase in pressure. The gradual increase in pressure was manually performed in blinded experiments. The upper limit pressure was 15 g. The end-point was characterized by the removal of the paw followed by clear flinching movements. After paw withdrawal, the intensity of the pressure was automatically recorded, and the final value for the response was obtained by averaging three measurements. The animals were tested before and after treatments. The results are expressed by the delta (Δ) withdrawal threshold (in g) calculated by subtracting the zero time mean measurements from the mean measurements at the indicated times after drug or solvent (controls) injections. Withdrawal threshold was 9.06 ± 0.2 g (mean ± S.E.M.) before injection of solvent or hypernociceptive agents.

B16F10 or B16 NY-ESO-1 melanoma challenge

Mice vaccinated with recombinant NY-ESO-1 were challenged s.c. at day 21 after boost with 56 × 10⁶ B16F10 melanoma cells expressing or not the cancer antigen NY-ESO-1. Tumor growth was monitored during 40 days.

Statistical analysis

All the statistical analysis were performed by GraphPad Prism Software Version 5.0 b (GraphPad Software, Inc., La Jolla, CA). The non-parametric group comparison was developed by Mann-Whitney test and the parametric data by T test. The tumor development data was analyzed by two-way ANOVA with additional Bonferroni post-test analysis. Survival curves were analyzed by Log-rank test. Differences were considered significant when p < 0.05.

Results

T. cruzi derived GIPs activate TLR4 and promote antigen-specific IgG2c and CD8⁺ T cell responses

The ability of GIPs to activate TLR2 and TLR4 was investigated in CHO cells functional for TLR4 (TLR4⁺) or not functional for TLR4 and stably transfected with TLR2 (TLR2⁺) (Figure 1). As positive controls, we used LPS and MALP-2, respectively. CHO cells transfected only with CD25 reporter gene were used as negative controls (TLR2 TLR4⁺). In this system, expression of CD25 is completely dependent upon NF-κB translocation. In Figure 1A it is shown that GIPs derived from the Y strain of *T. cruzi* (GY) leads to 15% enhancement of CD25 expression in TLR4⁺ cells. To certify that activation of TLR4⁺ cells were not due to LPS contamination, the same experiments were performed in the presence of polymyxin B (PB), a compound that is known to bind LPS and prevent TLR4 activation. The experiment shown in Figure 1B demonstrates activation of TLR4⁺ cells by *T. cruzi* GIP even after treatment with PB. In contrast activation with LPS was completely blocked by pre-treatment with PB. Thus, we consider that the activation of TLR4⁺ CHO cells by GIPs from the Y strain of *T. cruzi* was not due to a LPS contamination.

The GIPs were also compared with well-established TLR2 and TLR4 agonists, Pam3Cys and MPL, respectively, for their capacity to promote immunological responses in an immunization protocol using OVA as antigen. All the evaluated TLR agonists associated with alum plus OVA induced antigen-specific total IgG, as well as IgG1 and IgG2c. In contrast, mice that received only alum plus OVA induced antigen specific total IgG and IgG1, but not IgG2c isotype (Figure 1C). Splenocytes from vaccinated mice were restimulated with OVA-specific peptides for CD4⁺ T and CD8⁺ T cells. The levels of IFN-γ in the supernatant of splenocyte cultures was measured by ELISA (Figure 1D). Our data shows that MPL and Pam3Cys promoted IFN-γ production by OVA-specific CD4⁺ T and CD8⁺ T cells. In contrast, the GIP from *T. cruzi* induces IFN-γ production only by CD8⁺ T cells. Since the GIP derived from the Y strain of *T. cruzi* (GY) was the best parasite adjuvant to induce CD4⁺ T cell responses, it was chosen to be used in the vaccine formulations employing NY-ESO-1 as antigen.

Cpg ODNs derived from the *T. cruzi* genome activate TLR9 and promote antigen specific IgG2c as well as CD4⁺ T and CD8⁺ T cell responses

As previously reported [22], Cpg ODNs derived from *T. cruzi* genome activated human and mouse cells through TLR9 to produce IFN-α and IL-12 respectively (Fig. 2A and 2B). The *T. cruzi* derived Cpg motif B344, B297 and B120 were compared to the bacterial Cpg motif (Cpg 7909), as a positive control, for their capacity to induce immune response in a vaccine formulation containing OVA as antigen (Fig. 2C and 2D). Similar levels of anti-OVA antibodies were detected in sera from mice immunized with distinct TLR9 agonists, including the IgG2c isotype (Fig. 2C). The IFN-γ production by splenocytes restimulated with OVA-specific peptides demonstrates that all the Cpg ODNs were able to induce IFN-γ production by both CD4⁺ T and CD8⁺ T cells (Fig. 2D). The best results were obtained in mice immunized with Cpg6 ODNs 7909 and B344, indicating a potential for the *T. cruzi* derived Cpg ODN B344 to be used in vaccine formulations combined with NY-ESO-1.

Mapping of CD4⁺ T and CD8⁺ T cell epitopes from the cancer/testis antigen NY-ESO-1

The ORF of the NY-ESO-1 gene was analyzed for regions that bind to MHC Class I or II, in order to identify NY-ESO-1 specific T cell epitopes. To select the best CD4⁺ T cell epitope and CD8⁺ T cell epitope, three different epitopes for MHC class I and three for MHC class II were tested in an ex-vivo assay (Figure 3). C57BL/6 mice were immunized with alum alone, alum plus NY-ESO-1, and alum plus NY-ESO-1 plus Cpg ODN 7909. The IFN-γ production by NY-ESO-1-specific T cells was detected after restimulation of splenocytes with the different peptides (Fig. 3A). The CD8⁺ and CD4⁺-3 epitopes induced higher levels of IFN-γ production and were selected to be used in the next experiments. A schematic illustration shows the localization and sequence of NY-ESO-1 epitopes selected for this study (Fig. 3B). The specificity of selected peptides was confirmed employing highly purified CD4⁺ T or CD8⁺ T cell subsets. Our results show that CD4⁺ T and CD8⁺ T cells produced IFN-γ only when stimulated with peptides CD4-3 or CD8-1, respectively (Fig. 3C).

A *T. cruzi* derived Cpg motif promotes both CD4⁺ T and CD8⁺ T cell responses to NY-ESO-1 and delays development of the B16F10 melanoma cell line expressing NY-ESO-1

To test the ability of the *T. cruzi* derived TLR agonists to induce protective immunity in tumor development, we immunized mice with alum plus NY-ESO-1 associated with GIPL GY, Cpg ODN B344 or positive and negative controls. The capacity of the vaccine formulations to induce immunological responses anti-NY-ESO-1 and to protect mice against a challenge with B16F10 melanoma cell line expressing NY-ESO-1 was measured (Figure 4). The immunized mice were evaluated for the serum levels of anti-NY-ESO-1 total IgG, IgG1 and IgG2c isotypes. The levels of total IgG, IgG1 and IgG2c were similar when comparing the mice that
received different TLR agonists. In contrast, mice that received alum plus NY-ESO-1 without a TLR agonist produced high levels of antigen-specific total IgG and IgG1, but not IgG2c (Fig. 4A). The cellular immune responses were evaluated by measuring the levels of IFN-γ produced by splenocytes from immunized mice after restimulation with NY-ESO-1-derived CD4^+ T or CD8^+ T cell epitopes. Our results show that Cpg ODN B314 and 7000 (positive control) induced similar levels of IFN-γ (Fig. 4B). Importantly, in mice challenged with B16F10 melanoma expressing NY-ESO-1, the Cpg ODN B314 was the most effective TLR agonist in delaying tumor growth. No protection was observed in mice that received the wild type (non-transfected) B16F10 melanoma, indicating that the delay of tumor growth was mediated by NY-ESO-1-specific immune responses (Fig. 4C).

Treatment with paracetamol alleviates adjuvant-induced hypercoecision, but does not affect the protective immunity induced by the NY-ESO-1 vaccine.

One important aspect of immunological adjuvants is the side effect including the development of inflammation and pain at the site of vaccine injection. In this context, we evaluated whether the immunostimulatory effect of parasite adjuvants and complete vaccine formulation was associated with local hypercoecision (decrease in nociceptive threshold). As positive controls we used MPL, Pam3Cys and bacterial Cpg motifs. As expected, all the TLR agonists, positive controls or the required ones, induced significant increase in hypercoecision (Fig. 5A). In a second set of experiments, we used the complete vaccine formulation, including alum and NY-ESO-1 as adjuvant (Fig. 5B). Our results...
show that alum on its own induced an augmentation of hypernecroception, which was not further augmented by the association with specific TLR agonists. Thus, we did not find a correlation with the quality of the immune response (i.e., TCMI and protective immunity) and “pain”. In fact, the presence of alum was the determinant factor for hypernecroception in our vaccine formulations. Importantly, PCM partially blocked hypernecroception in mice inoculated with our vaccine formulations. Parallel experiments were performed by immunizing mice with the previously described formulations with NY-ESO-1 antigen in association or not with the PCM treatment (Fig. 6). Neither humoral (Fig. 6A) nor cellular (Fig. 6B) immune responses were
Figure 3. Mapping of immunostimulatory CD4⁺ and CD8⁺ T cell epitopes present in NY-ESO-1. (A) C57BL/6 mice were immunized with alum alone, alum plus NY-ESO-1 associated or not with Cpg CDN. 7009 to evaluate the immunostimulatory activity of peptides encoding the putative CD4⁺ and CD8⁺ T cell epitopes from NY-ESO-1. Mice received three immunization doses at day 0, 14 and 28. Splenocytes were harvested 21 days after the last immunization dose, restimulated in vitro with different NY-ESO-1-specific peptides, and the levels of IFN-γ production measured in the cell culture supernatants by ELISA. Asterisks indicate that differences in IFN-γ responses to a specific CD4⁺ or CD8⁺ T cell peptides (CD8-1, CD8-3 and CD8-3) were statistically significant (p < 0.001), when comparing splenocytes from mice receiving the same vaccine formulation, stimulated with CD8-2, CD4-1, CD4-2, or left unstimulated. (B) A schematic illustration shows the sequence and position of immunostimulatory CD4⁺ T and CD8⁺ T cell epitopes selected from NY-ESO-1 to be used in this study. (C) CD4⁺ T and CD8⁺ T lymphocytes were enriched from total spleen cells of immunized mice by magnetic beads. Each subpopulation was restimulated with CD4-3 and CD8-1 peptides and IFN-γ production evaluated by ELISA after 72 hours incubation.
Parasite Adjuvants for Anticancer Vaccine

Figure 4. Evaluation of antibody and T cell responses as well as protective immunity elicited by immunization with different formulations containing the tumor-associated NY-ESO-1 antigen. C57BL/6 mice were subjected to three immunization doses on days 0, 14, and 28. (A) Serum levels of NY-ESO-1-specific total IgG, IgG1 and IgG2c; and (B) IFN-γ production by splenocytes stimulated with NY-ESO-1 CD4+ T and CD8+ T peptides cells were evaluated by ELISA. (C) Control and immunized mice were challenged with 5 × 10⁶ B16F10 melanoma cell expressing or not NY-ESO-1. The tumor growth was evaluated every 4 days for 40 days after challenge. Asterisks indicate that differences in IFN-γ responses to NY-ESO-1 CD4+ T and CD8+ T cell peptide and tumor growth are statistically significant, when comparing mice receiving different vaccine formulations.

doi:10.1371/journal.pone.0036245.g004

Discussion

Most of the commercially available vaccines that are considered highly effective in eliciting strong and long-lasting protective immunity are thought to be mediated by neutralizing antibodies, as is the case of Tetanus Toxoid, Poliovirus, Small Pox and Measles vaccines [31,32]. In contrast, development of effective vaccines that elicit TCMI, largely responsible for mediating protective immunity to infections such as tuberculosis and leishmaniasis, as well as cancer, is a difficult task [18,31,33]. A major challenge for the development of vaccines that induce TCMI is the establishment of ideal formulations to induce strong and long-lasting protective T cell immunity, mediated by CD8+ T lymphocytes [18,31]. In particular, immunological adjuvants capable of eliciting a strong and long-lived TCMI with the least side effect is a main Achilles’ heel for development of human vaccines [32].

The finding that activation of innate immune receptors promotes the development of Th1 lymphocytes and TCMI has stimulated the search for new TLR agonists, as potential immunological adjuvants [11,12]. Our preliminary studies demonstrated that GPl anchors and GPlNs from T. cruzi are able to induce the synthesis of pro-inflammatory cytokines via TLR2 and TLR4, respectively [20,21]. Furthermore, various CpG ODN sequences derived from T. cruzi genome are also able to stimulate cytokine synthesis, including IL-12, both by macrophages and dendritic cells via TLR9 [22]. In the present study, we tested in vivo the T. cruzi derived Pathogen Associated Molecular Patterns (PAMPs) as immunological adjuvants. We showed that GPlNs from T. cruzi are potent inducers of antigen-specific immune responses, as measured by IFN-γ production by CD8+ lymphocytes as well as serum levels of IgG2c. Furthermore, CpG ODNs derived from T. cruzi, in special the B1444 induced an antigen-specific immune response by CD8+ T lymphocytes, leading to a delay in tumor development in an antigen-specific manner.
Figure 5. Hypernociception induced by TLR agonists and the NY-ESO-1 vaccine formulations. (A) Different TLR agonists were injected in the footpad of mice and hypernociception evaluated at the indicated time points; (B) Vaccine formulations containing alum, alum plus NY-ESO-1, or alum plus NY-ESO-1 associated with TLR agonists were given to mice that were left untreated or treated with PCM orally, 30 minutes prior injection with different vaccine formulations. Asterisks mean significant difference when comparing PBS group with TLR agonists experimental groups (P<0.05).

doi:10.1371/journal.pone.0036245.g005
Figure 6. Evaluation of antigen-specific immune response after PCM administration. C57BL/6 mice were subjected to three immunization doses on days 0, 14 and 28. Thirty minutes prior each immunization dose, a group of mice received 10 mg/kg of PCM by the oral route. (A) Serum levels of NY-ESO-1-specific total IgG, IgG1 and IgG2c and (B) IFN-γ responses by splenocytes stimulated with NY-ESO-1 CD4+ T and CD8+ T cell peptides were evaluated by ELSA. (C) Control and immunized mice were challenged with 5× 10⁶ B16F10 melanoma cell expressing or not NY-ESO-1. The tumor growth was evaluated every 4 days for 40 days after challenge. Asterisks indicate that differences in IFN-γ responses to NY-ESO-1 CD4+ T and CD8+ T cell peptide and curve of tumor growth are statistically significant, when comparing mice receiving different vaccine formulations. (D) The frequency of CD8+ T cells NY-ESO-1-specific were evaluated by flow cytometry using as marker FITC CD3, PE-Cy5 CD8 and PE NY-ESO-1 tetramer.
Acquired immunity to tumors involves both humoral and cellular compartments. While antigen-specific antibodies have been demonstrated to mediate protection [34], CD8+ T lymphocytes are thought to be the main effector cells, which mediate cytotoxic activity against tumor cells [35]. In addition, both CD8+ T as well as CD4+ T lymphocytes are important sources of IFN-γ that has various roles in inducing effector mechanisms thought to mediate antitumor activities, which includes activation of effector functions by macrophages [36]. Thus, a critical step for developing effective vaccines is to learn how to induce the appropriate immune response necessary to control tumor growth. Different strategies have been employed to induce strong T cell-mediated immunity and in particular CD8+ T cells specific for tumor antigens. These strategies include the use of plasmids (made DNA) [37] as well as live attenuated viral and bacterial vectors, such as adenoviruses [38], MVA [39], Salmonella typhi [6] and Listeria monocytogenes [40], respectively. In addition, the discovery that Toll-like receptors are activated by viral and bacterial products, also named PAMPs (e.g., LPS, DNA, RNA, lipopeptides, flagella, Poli-Ig) as well as synthetic components (e.g., imiquimod, CpG ODN, Pam3Cys) [18] with proinflammatory and immunostimulatory activity has boosted the field of vaccine development [11].

Briefly, cells from the innate immune system exposed to microbial/synthetic products, synthesize high levels of proinflammatory cytokines, such as IL-12 and TNF-α, that are responsible for initiation of IFN-γ synthesis by natural killer cells [41,42]. In addition, when DCs are exposed to certain PAMPs, they express co-receptors, in order to initiate the activation process of naïve T cells, making a bridge between the innate and acquired immunity [11,14,15,18,19,23,24,35]. Furthermore, DCs activated with TLR agonists will produce IL-12, which will influence the differentiation of CD8+ T cells into the Th1 lymphocytes, a main source of IFN-γ, and orchestrate the establishment of Th1. IFN-γ is critical for class switch of Ig isotypes [44] and activation of effector mechanisms displayed by macrophages that are often involved in host resistance to tumors [35,36]. Moreover, activation of antigen presenting cells favors cross-presentation, allowing presentation of exogenous antigens via MHCI class I and favoring the development of antigen-specific CD8+ T cells [17]. Of note, vaccine formulations containing TLR agonists will produce IL-12, which will influence the differentiation of CD8+ T cells into the Th1 lymphocytes, a main source of IFN-γ, and orchestrate the establishment of Th1. IFN-γ is critical for class switch of Ig isotypes [44] and activation of effector mechanisms displayed by macrophages that are often involved in host resistance to tumors [35,36]. Moreover, activation of antigen presenting cells favors cross-presentation, allowing presentation of exogenous antigens via MHCI class I and favoring the development of antigen-specific CD8+ T cells [17]. Of note, vaccine formulations containing TLR agonists will produce IL-12, which will influence the differentiation of CD8+ T cells into the Th1 lymphocytes, a main source of IFN-γ, and orchestrate the establishment of Th1. IFN-γ is critical for class switch of Ig isotypes [44] and activation of effector mechanisms displayed by macrophages that are often involved in host resistance to tumors [35,36]. Moreover, activation of antigen presenting cells favors cross-presentation, allowing presentation of exogenous antigens via MHCI class I and favoring the development of antigen-specific CD8+ T cells [17]. Of note, vaccine formulations containing TLR agonists will produce IL-12, which will influence the differentiation of CD8+ T cells into the Th1 lymphocytes, a main source of IFN-γ, and orchestrate the establishment of Th1. IFN-γ is critical for class switch of Ig isotypes [44] and activation of effector mechanisms displayed by macrophages that are often involved in host resistance to tumors [35,36]. Moreover, activation of antigen presenting cells favors cross-presentation, allowing presentation of exogenous antigens via MHCI class I and favoring the development of antigen-specific CD8+ T cells [17]. Of note, vaccine formulations containing TLR agonists will produce IL-12, which will influence the differentiation of CD8+ T cells into the Th1 lymphocytes, a main source of IFN-γ, and orchestrate the establishment of Th1.

Intracellular protozoan parasites, such as Toxoplasma gondii, T. cruzi, as well as Leishmania major are known to induce a strong and long-lasting Th1 response, which is characterized by highly polarized Th1 lymphocytes and strong CD8+ T cell responses [48,49]. The induction of Th1 lymphocytes and Th2 during protozoan infection is highly dependent on IL-12 [50] as well as Myeloid differentiation primary response gene 88 (MyD88) and TLRs [29,31]. Studies performed in our laboratory have dedicated to identify parasite PAMPs that are critical for activating TLRs and initiating the IL-12 production and Th1-mediated immune responses.

In conclusion, our experiments employing vaccine formulations containing NY-ESO-1 demonstrate that T. cruzi derived TLR agonists, e.g., GPIPs and CpG ODNs, are efficient immunostimulatory adjuvants. Importantly, the use of T. cruzi derived CpG ODNs as immunostimulatory adjuvant in our vaccine formulation resulted in a significant delay in the growth of the B16F10 melanoma cell line expressing NY-ESO-1. The protective immunity correlated with the magnitude of CD8+ T cell response induced by a specific TLR agonist. Finally, our results show that in our vaccine formulations alun was the main component inducing hypersensitization, which was alleviated by the administration of PCM. Thus, parasite adjuvants should be further explored in the development of vaccine formulations, aiming to induce both humoral and cellular-mediated immune responses.

Acknowledgments

We are grateful to Andrew Simpson, Jonathan Skipper and Lloyd Old from the LIRI, New York, and Denise Golger for insightful discussions and suggestions during the development of this work. We also acknowledge the LICR - Cornell University for the recombinant NY-ESO-1 protein, and Dr. Jonathan Cebon from LICR-Melbourne for the B16F10 and B16-NY-ESO-1 cell lines.

Author Contributions

Conceived and designed the experiments: CJ AITG TMC GR IC RTG. Performed the experiments: CJ AITG BGP WA ARCS TMC CR MAC MLOP. Analyzed the data: CJ AITG TMC MAC IMI JOP FHO FG RTG.
References

