Clinical Utility of Polymerase Chain Reaction–Based Detection of *Leishmania* in the Diagnosis of American Cutaneous Leishmaniasis

Camila Indiani de Oliveira,1 André Báfrica,1 Fabiano Oliveira,1,2 Cecilia B. F. Favalil,1,2 Tania Correa,1 Luiz A. R. Freitas,1,2 Eliane Nascimento,2 Jackson M. Costa,1 and Aldina Barral1,2

1Centro de Pesquisas Gonçalo Muniz, Fundação Oswaldo Cruz, 2Faculdade de Medicina, Universidade Federal da Bahia, Salvador, and 3Centro de Referência para Doenças Endêmicas Pirajá da Silva, Jequié, Brazil

We evaluated the use of polymerase chain reaction (PCR) for diagnosis of American cutaneous leishmaniasis (ACL) in an area in Bahia, Brazil, where *Leishmania braziliensis* is endemic. *Leishmania* DNA was detected in 50 cases, yielding a positivity rate of 100%, which was higher than the rates for all of the other diagnostic methods studied—namely, the Montenegro skin test, anti-*Leishmania* serological testing, and microscopic examination of lesion biopsy specimens. These findings have led us to propose guidelines for the diagnosis of ACL that use PCR as the principal means of parasitological confirmation of cases.

Leishmania, a protozoan parasite, is the cause of leishmaniasis, a human disease with diverse clinical manifestations. An estimated 12 million people are currently infected with *Leishmania* species, whereas another 350 million people live at risk of infection [1]. American cutaneous leishmaniasis (ACL) is characterized by a cutaneous ulcer with elevated borders and a sharp crater, which, when caused by parasites of the *Leishmania braziliensis* complex, may spontaneously heal, disseminate, or metastasize to the nasopharyngeal tract. When metastasis occurs, severe disfigurement and secondary complications may also occur, with a fatal outcome [2]. Therefore, it is important to have an accurate diagnosis of infection to avoid the unnecessary use of drugs that, at this moment, still involve high costs and significant toxicity. Furthermore, it is most important to avoid the development of a long-lasting chronic disease, which is common in infections caused by New World *Leishmania* parasites.

Definitive diagnosis of ACL is made by demonstration of *Leishmania* parasites in tissue samples or by culture or by animal inoculation of material extracted from lesions. These methods are time-consuming and require experienced personnel, as well as special facilities. The main drawback of these methods, however, is the low sensitivity. To overcome such difficulties, new molecular approaches to the diagnosis of leishmaniasis have been developed [3]. Among these, the most widely used is PCR. In fact, a number of PCR assays have been developed for the detection of *Leishmania* species in clinical samples [4–9]. These assays target the amplification of rRNA, miniexon genes, kinetoplast DNA (kDNA), and repetitive nuclear DNA sequences. These methods have varying specificities: some identify the parasite to the level of species complex, whereas others identify all *Leishmania* species. This information is sufficient for diagnostic purposes; however, higher specificity can contribute directly to understanding the epidemiology of leishmaniasis.

Several research groups have examined the use of PCR as a diagnostic tool in areas where leishmaniasis is endemic; however, despite the many favorable results, diagnosis of leishmaniasis is still based on indirect tests,
such as serological tests and the Montenegro skin test. The aim of the present study was to evaluate the contribution of PCR to the diagnosis of ACL and, on the basis of the results we obtained, to provide experimental evidence of the effectiveness of this detection tool.

PATIENTS, MATERIALS, AND METHODS

Study area and patients. Biopsy specimens were obtained from patients with ACL who attended the Pirajá da Silva Reference Center (PIEJ) for endemic diseases during the period of September 2000 through April 2001. The PIEJ is located in the town of Jequié, where L. braziliensis is endemic; Jequié is in southeastern Bahia, Brazil. The PIEJ is responsible for treating patients with ACL from ≥20 small nearby municipalities.

Research was conducted in accordance with the Fundação Oswaldo Cruz (FIOCRUZ) guidelines for human experimentation and the Brazilian Ministry of Health regulations for research involving humans. Clinical research was approved by the Ethics Committee of the Centro de Pesquisas Gonçalo Muniz–FIOCRUZ (Salvador, Brazil), and informed consent was obtained from all individuals enrolled in the study. All patients underwent a complete physical examination, as well as clinical and laboratory evaluations. The Montenegro skin test, in which a delayed-type hypersensitivity reaction is provoked, was performed with a soluble Leishmania antigen that was prepared as described elsewhere [10], and Leishmania parasites were used to perform an indirect immunofluorescence assay (IFA) test, to detect the presence of anti-Leishmania antibodies, as described elsewhere [11].

The clinical characteristics of the 50 patients with ACL enrolled in this study are shown in table 1. All patients were treated with intravenous pentavalent antimony (Glucantime; Rhodia) at a dose of 20 mg Sb+5/kg per day for 20 days. All patients were cured, as shown by the presence of healed lesions; cure was defined as the complete scarring of lesions, without induration and without recurrences up to 1 year after completion of treatment. The definition of a confirmed case of ACL was, therefore, based on the presence of typical lesions, a compatible epidemiological history, a positive Montenegro skin test and the presence of circulating antibodies (as detected by IFA), and clinical response to specific treatment.

Sample collection. After the administration of a local anesthetic, biopsy samples were obtained from the border of the lesion using a disposable 3.5-mm punch. Biopsy tissue specimens were fixed in 10% buffered formalin (pH, 7.0) and were processed using standard techniques for paraffin embedding. Tissue sections were stained with hematoxylin-eosin (HE), and immunohistochemical testing was performed using a polyclonal antibody against Leishmania species, as described elsewhere [12]. For negative controls, we used 10 biopsy specimens that were obtained from a collection of lesions caused by dermatological diseases not related to leishmaniasis, as well as biopsy specimens obtained from healthy patients who had undergone plastic surgery, all of whom were living in the same study area as the patients enrolled in our study.

Enlarged lymph nodes, draining the lesion site, were aspirated using a 1-ml syringe with a 25-gauge needle containing 500 μL of RPMI 1640 medium (Invitrogen). Aspirate was later transferred to sterile Vacutainer tubes (BD Biosciences) containing Nicole, Novy, and McNeal culture medium. Cultures were observed weekly for ≥4 weeks before the results were considered to be negative.

PCR. Thirty-micrometer sections of the paraffin blocks containing patients’ biopsy specimens were used for DNA extraction. DNA extraction and purification were performed using the Nucleon HT kit (Amersham Biosciences), in accordance with the manufacturer’s instructions. Samples were eluted in 50 μL of TE (10 mmol/L Tris-HCl [pH, 8.0] and 0.1 mmol/L EDTA [pH, 8.0]). PCR was performed with the primers 5′-GGG(G/T)AGGGCGTTCT(G/C)CGAA-3′ and 5′-(G/C)(G/C)(A/T)CTAT(A/T)TTACACCC-3′, which target the amplification of the 120-bp conserved region of the Leishmania kDNA minicircle of all Leishmania species. A reaction mixture was prepared that contained 50 mmol/L KCl, 10 mmol/L Tris-HCl (pH, 8.0), 0.2 mmol/L each deoxycytidylate deoxiyribonucleotide (Invitrogen), 1 μmol/L each primer, 1.25 U of Taq polymerase (Invitrogen), and 2.5 μL of DNA sample in a final volume of 25 μL. The PCR conditions were as follows: denaturation at 94°C for 3 min, followed by 30 cycles of 94°C for 30 s, 55°C for 30 s, and 94°C for 45 s, with a final extension of 72°C for 10 min. The amplification reactions were analyzed by agarose gel electrophoresis, followed by ethidium bromide staining and

<table>
<thead>
<tr>
<th>Characteristic or finding</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>34 (68)</td>
</tr>
<tr>
<td>Positive Montenegro skin test</td>
<td>36 (72)</td>
</tr>
<tr>
<td>Enlarged lymph nodes</td>
<td>21 (42)</td>
</tr>
<tr>
<td>Age, years</td>
<td>27.5 (3–87)</td>
</tr>
<tr>
<td>Duration of disease, days</td>
<td>47.5 (4–120)</td>
</tr>
<tr>
<td>Size of lesion, cm</td>
<td>3 (1–12)</td>
</tr>
<tr>
<td>No. of lesions</td>
<td>1 (1–5)</td>
</tr>
<tr>
<td>Dose of intravenous pentavalent antimony, ampoules</td>
<td>80 (16–210)</td>
</tr>
<tr>
<td>Time to clinical cure, days</td>
<td>60 (20–360)</td>
</tr>
</tbody>
</table>

NOTE. Data are no. (%) of patients or median range.

* Largest lesion from each patient.
visualisation under UV light. DNA from the reference *L. braziliensis* strain MHOM/BR/75/2904 was used as a positive control.

RESULTS

Clinical characteristics of patients with ACL. Biopsy samples were obtained from 50 patients with ACL, all of whom were clinically cured after completion of the therapeutic regimen, as shown by complete healing of the lesion. Table 1 shows the clinical characteristics of this patient population. The Montenegro skin test was positive for 36 patients (72%) and negative for 16 patients (28%). In all patients with a negative Montenegro skin test result, the appearance of the lesion was recent (<55 days). Enlarged lymph nodes were observed in 21 (42%) of 50 patients.

Conventional methods of detection of Leishmania species. Table 2 shows the results obtained by conventional diagnostic methods for detection of *Leishmania*. Anti-*Leishmania* antibodies were detected in 21 (42%) of 50 serum samples, and parasites were isolated in 12 (57%) of 21 lymph node aspirates. Parasites were successfully isolated at a high rate mainly because the cultivation material came from enlarged lymph nodes, satellite to the lesion; therefore, the material was free of contaminating microorganisms that are commonly present in skin lesions. A high rate of lymph node enlargement has been observed in this area of endemicity, which confirms previous data on the presence of lymphadenopathy as an initial sign of ACL and as sometimes the only manifestation of *L. braziliensis* infection [13].

The 50 biopsy samples were submitted for histopathological examination, which consisted of both HE staining and immunohistochemical testing of biopsy sections. Direct visualisation of parasites by HE staining was possible for only 8 (16%) of 50 samples. When immunohistochemical testing was used, parasites were detected in 33 (66%) of 50 samples.

PCR detection of Leishmania species. PCR was performed using primers that amplify a conserved region of *Leishmania* kinetoplast minicircles. In all 50 biopsy samples examined, the characteristic 120-bp amplification product was observed (figure 1). Positive and negative controls were included in all amplification reactions to ensure the amplification of the correct *Leishmania* product. No amplification of the 120-bp fragment was produced by PCR of biopsy samples obtained from patients with vascular ulcers or stasis ulcers, which are frequently mistaken for leishmaniasis by the patients, or by PCR of biopsy samples obtained from healthy individuals (who had either positive or negative skin test results) who live in the area of endemicity in Jequé (figure 2A); these results confirm that PCR detects the presence of active disease only. To ensure that this lack of amplification was not associated with the presence of inhibitors in the DNA sample, purified *Leishmania* DNA was added to each sample as an inhibition control (figure 2B), and the 120-bp fragment was seen in all of these samples. Therefore, PCR for the detection of *Leishmania* species in biopsy samples yielded a positivity rate of 100%, compared with the rates obtained by immunohistochemical testing (66%) and anti-*Leishmania* serological testing (42%) (table 2). The specificity of PCR for detection of *Leishmania* species was found to be 100%, because no amplification product was detected in samples obtained from patients with cutaneous ulcers that were not related to *Leishmania* infection or in biopsy specimens of healthy skin.

DISCUSSION

In the present study, we investigated the benefits of PCR as a tool for the detection of *Leishmania* parasites in biopsy specimens obtained from patients with ACL. In terms of clinical utility, PCR offers several advantages: it is highly sensitive and specific, and, most importantly, it is more rapid than the currently available methods—namely, serological tests, the Montenegro skin test, and microscopic examination of lesion biopsy specimens with HE staining and immunostaining [6, 9, 14–16]. Our results show that PCR results were positive for all biopsy samples obtained from patients with ACL, regardless of the results obtained with other diagnostic procedures, yielding a rate of positivity of 100%. This positivity rate was calculated on the basis of the fact that all patients in this study had clinical cure, defined as a total scarring of the initial lesions without

| **Table 2. Results of tests used for diagnosis of American cutaneous leishmaniasis.** |
|---------------------------------|---------------------------------|-----------------|
| **Method** | **No. of positive results/total no. of tests performed (%)** |
| Serological testing | 21/50 (42) |
| Culture | 12/21 (57) |
| Hematoxylin-eosin staining | 8/50 (16) |
| Immunohistochemical testing | 33/50 (66) |
| PCR | 50/50 (100) |
The Montenegro skin test is simple and sensitive, and to date, it is the main indirect test used for confirmation of disease in areas of endemicity, especially in rural areas where resources for laboratory diagnosis are scarce or nonexistent [20]. In this study from the Jequiê area of endemicity, we used a soluble Leishmania antigen [10], and we obtained a positive result for 72% of patients. Although the remaining patients presented with a cutaneous ulcer, all reported being recently infected (infection had occurred <2 months before the study). Serological tests are less informative in cases of ACL because of the characteristic low titers of specific antibodies. Accordingly, 42% of patients had positive results of IFA.

In conclusion, the present data support the view that PCR is the best approach to diagnosis of ACL, compared with parasitological confirmation by direct microscopy, detection of anti-Leishmania antibodies, and isolation of parasites in culture. However, major hurdles, such as cost and the need for laboratory facilities, must be overcome before this approach can be widely implemented in areas of endemicity. Therefore, PCR can be an alternative diagnostic procedure in cases of ACL in which the patient presents with a typical cutaneous ulcer and has both negative results of the Montenegro skin test, which can occur in recent infection, and negative results of anti-Leishmania serological tests.

Acknowledgments

We thank members of the Centro de Referência para Doenças Endêmicas Pirajá da Silva for provision of clinical data. We thank Graça Vieira, for provision of selected biopsy specimens, and Tatiana de Queiroz, for obtaining the biopsy sections. Finally, we are indebted to Claudia Brodskyn and Manoel Barral-Netto for critically reviewing the manuscript and providing encouragement.

References

