Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/40459
Type
ArticleCopyright
Open access
Collections
- IOC - Artigos de Periódicos [12140]
Metadata
Show full item record
COOPTION OF THE PTERIDINE BIOSYNTHESIS PATHWAY UNDERLIES THE DIVERSIFICATION OF EMBRYONIC COLORS IN WATER STRIDERS
Diversificação
Cooptação
Cores embrionárias
Striders de água
Author
Vargas-Lowman, Aidamalia
Armisen, David
Burguez Floriano, Carla Fernanda
Cordeiro, Isabelle da Rocha Silva
Viala, Séverine
Bouchet, Mathilde
Bernard, Marie
Le Bouquin, Augustin
Santos, M. Emilia
Berlioz-Barbier, Alexandra
Salvador, Arnaud
Moreira, Felipe Ferraz Figueiredo
Bonneton, François
Khila, Abderrahman
Armisen, David
Burguez Floriano, Carla Fernanda
Cordeiro, Isabelle da Rocha Silva
Viala, Séverine
Bouchet, Mathilde
Bernard, Marie
Le Bouquin, Augustin
Santos, M. Emilia
Berlioz-Barbier, Alexandra
Salvador, Arnaud
Moreira, Felipe Ferraz Figueiredo
Bonneton, François
Khila, Abderrahman
Affilliation
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biodiversidade Entomológica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biodiversidade Entomológica. Rio de Janeiro, RJ, Brasil.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France / University of Toronto. Department of Ecology and Evolutionary Biology. Toronto, Canada.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Centre Commun de Spectrométrie de Masse .Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR 5246, Université Lyon, Université Claude Bernard Lyon1, 69622 Villeurbanne, France.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biodiversidade Entomológica. Rio de Janeiro, RJ, Brasil.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biodiversidade Entomológica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biodiversidade Entomológica. Rio de Janeiro, RJ, Brasil.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France / University of Toronto. Department of Ecology and Evolutionary Biology. Toronto, Canada.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Centre Commun de Spectrométrie de Masse .Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR 5246, Université Lyon, Université Claude Bernard Lyon1, 69622 Villeurbanne, France.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biodiversidade Entomológica. Rio de Janeiro, RJ, Brasil.
Université Lyon. Institut de Génomique Fonctionnelle de Lyon. Lyon, France / Université Claude Bernard Lyon1. Lyon, France.
Abstract
Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.
Keywords in Portuguese
Biossíntese de pteridinaDiversificação
Cooptação
Cores embrionárias
Striders de água
Share