Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/54391
Type
ArticleCopyright
Open access
Collections
- INI - Artigos de Periódicos [3466]
- IOC - Artigos de Periódicos [12658]
Metadata
Show full item record
TUBERCULOSIS DRUG RESISTANCE PROFILING BASED ON MACHINE LEARNING: A LITERATURE REVIEW
Sequenciamento completo do genoma
Previsão de resistência a medicamentos
Aprendizado de máquina
Whole genome sequencing
Drug resistance prediction
Machine Learning
Author
Affilliation
Faculty of Engineering and Technology, Liverpool John Moores University (LJMU). Liverpool, United Kingdom.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactéerias. Rio de Janeiro, RJ, Brasil.
Instituto Evandro Chagas. Seção de Bacteriologia e Micologia. Ananindeua, PA, Brasil / Universidade do Estado do Pará, Instituto de Ciências Biológicas e da Saúde, Pós Graduação em Biologia Parasitária na Amazônia, Belém, PA, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Programa de Pós-graduação em Pesquisa Clínica e Doenças Infecciosas. Rio de Janeiro, RJ, Brasil / Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactéerias. Rio de Janeiro, RJ, Brasil.
Instituto Evandro Chagas. Seção de Bacteriologia e Micologia. Ananindeua, PA, Brasil / Universidade do Estado do Pará, Instituto de Ciências Biológicas e da Saúde, Pós Graduação em Biologia Parasitária na Amazônia, Belém, PA, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Programa de Pós-graduação em Pesquisa Clínica e Doenças Infecciosas. Rio de Janeiro, RJ, Brasil / Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the top 10 causes of death worldwide. Drug-resistant tuberculosis (DR-TB) poses a major threat to the World Health Organization’s “End TB” strategy which has defined its target as the year 2035. In 2019, there were close to 0.5 million cases of DRTB, of which 78% were resistant to multiple TB drugs. The traditional
culture-based drug susceptibility test (DST - the current gold standard) often takes multiple weeks and the necessary laboratory facilities are not readily available in low-income countries. Whole genome sequencing (WGS) technology is rapidly becoming an important tool in clinical and research applications including transmission detection or prediction of DR-TB. For the latter, many tools have recently been developed using curated database(s) of known resistance conferring mutations. However, documenting all the mutations and their effect is a time-taking and a continuous process and therefore Machine Learning (ML) techniques can be useful for predicting the presence of DR-TB based on WGS data. This can pave the way to an earlier detection of drug resistance and consequently more efficient treatment when compared to the traditional DST.
Keywords in Portuguese
Mycobacterium tuberculosisSequenciamento completo do genoma
Previsão de resistência a medicamentos
Aprendizado de máquina
Keywords
Mycobacterium tuberculosisWhole genome sequencing
Drug resistance prediction
Machine Learning
Share