Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/65241
Type
ArticleCopyright
Open access
Embargo date
2027
Sustainable Development Goals
07 Energia limpa e acessívelCollections
Metadata
Show full item record
DFT CALCULATIONS, MOLECULAR DOCKING, BINDING FREE ENERGY ANALYSIS AND CYTOTOXICITY ASSAY OF 7,7-DIMETHYLAPORPHINE ALKALOIDS WITH METHYLENEDIOXY RING IN POSITIONS 1 AND 2
DFT
Docking molecular
Energia de ligação por MM/PBSA
Ensaio de citotoxicidade
DFT
Molecular docking
Binding energy by MM/PBSA
Cytotoxicity assay
Author
Affilliation
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil / Faculdade de Ensino, Pesquisa e Inovação do Amazonas. Manaus, AM, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil / Faculdade de Ensino, Pesquisa e Inovação do Amazonas. Manaus, AM, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Universidade Federal do Amazonas. Departamento de Química. Manaus, AM, Brasil.
Abstract
In this paper, we present a comprehensive characterization of three 7,7-dimethylaporphine alkaloids at a molecular quantum mechanical level using Density Functional Theory (DFT) with the B3LYP/6-311G(2d,p) basis set. These alkaloids have a methylenedioxy group in positions 1 and 2, differing from each other only by the presence or absence of one OCH3 group, with the influence of this group on the properties of the investigated alkaloids being the object of study in this research. The accuracy of our findings is validated by comparing the infrared (IR) and UV–Visible (UV–Vis) spectra with experimental data previously reported by one of the authors. Theoretical geometry optimization data were further assessed against X-ray data from related structures in the literature, revealing close agreement. Additionally, various quantum properties, such as Natural Bond Orbitals (NBOs), HOMO-LUMO energy gap, mapped Molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities, were evaluated at the same calculation level. To understand the interactions between the alkaloids and important biological targets, molecular dynamics simulations were carried out using Gromacs 2019 software. The focus was on investigating the MM/PBSA binding free energies at the active sites of human Topoisomerase I DNA, Candida Albicans Dihydrofolate Reductase, Acetylcholinesterase, and Spike SARS-CoV-2. These results were compared to those obtained from molecular docking studies performed with the alkaloids at the same active sites. Remarkably, alkaloid 2, lacking OCH3 substituents, demonstrated the highest inhibitory potential for three out of the four enzymes, excluding C. Albicans according to docking results, which was subsequently confirmed through cytotoxicity experiments. These findings shed light on the molecular basis for the observed differences in the alkaloids' biological activities and contribute to the design of potential therapeutic agents targeting these enzymes.
Keywords in Portuguese
Alcaloides de 7,7-dimetilaporfinaDFT
Docking molecular
Energia de ligação por MM/PBSA
Ensaio de citotoxicidade
Keywords
7,7-Dimethylaporphine alkaloidsDFT
Molecular docking
Binding energy by MM/PBSA
Cytotoxicity assay
Share