Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/67914
Type
ArticleCopyright
Open access
Sustainable Development Goals
03 Saúde e Bem-Estar09 Indústria, inovação e infraestrutura
15 Vida terrestre
Collections
Metadata
Show full item record
GENOME-WIDE EXPLORATION OF THIAMIN PYROPHOSPHATE RIBOSWITCHES IN MEDICALLY RELEVANT FUNGI REVEALS DIVERSE DISTRIBUTION AND IMPLICATIONS FOR ANTIMICROBIAL DRUG TARGETING
Author
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Aplicada e Bioinovações. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Aplicada e Bioinovações. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Presidência. Programa de Computação Científica. Grupo de Biofísica Computacional e Modelagem Molecular. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Aplicada e Bioinovações. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Aplicada e Bioinovações. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Presidência. Programa de Computação Científica. Grupo de Biofísica Computacional e Modelagem Molecular. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Aplicada e Bioinovações. Rio de Janeiro, RJ, Brasil.
Abstract
The rising incidence of fungal infections coupled with limited treatment options underscores the urgent need for novel antifungal therapies. Riboswitches, particularly thiamin pyrophosphate (TPP) class, have emerged as promising antimicrobial targets. This study presents a comprehensive genome-wide analysis of TPP riboswitches in 156 medically relevant fungi utilizing advanced covariance models (CMs) tailored for fungal sequences. Our investigation identified 378 conserved TPP riboswitch sequences distributed across 140 distinct species, revealing a broader prevalence than that previously recognized. Notably, we provide evidence for a novel putative group of TPP riboswitches, designated TPPswˢᵁᴳᴬᴿ, associated with sugar transporters in Mucoromycota and Basidiomycota. This group exhibits distinctive structural features while maintaining key TPP-binding motifs, potentially expanding our understanding of the riboswitch diversity in fungi. Our analysis highlights the impact of P3 stem variability on riboswitch detection and characterization, demonstrating the superiority of fungal-specific CMs over generic models. We observed multiple TPP riboswitches in over 50% of the examined species, including clinically significant pathogens involved in aspergillosis and mucormycosis. Remarkably, Aspergillus latus, a species associated with COVID-19 coinfections, harbors six distinct TPP riboswitch sequences, whereas the extremophilic black fungus Hortaea werneckii possesses nine. These findings not only elucidate the diverse distribution of TPP riboswitches in pathogenic fungi but also emphasize their potential as multifaceted targets for antifungal drug development. By addressing key limitations of previous detection methods and providing insights into riboswitch structural diversity, this study lays a foundation for future investigations into riboswitch-mediated regulation in fungi and the development of novel antifungal strategies.
Share