Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/68158
ENHANCING PODOCYTE DEGENERATIVE CHANGES IDENTIFICATION WITH PATHOLOGIST COLLABORATION: IMPLICATIONS FOR IMPROVED DIAGNOSIS IN KIDNEY DISEASES
Medical diagnostic imaging
Training
Image segmentation
Diseases
Computational modeling
Kidney
Author
Affilliation
Instituto Federal Goiano. Goiânia, GO, Brasil / Universidade de Brasília. Departamento de Ciência da Computação. Brasília, DF, Brasil.
Universidade Federal da Bahia. Departamento de Patologia. Salvador, BA, Brasil.
Fundação Oswaldo Ramos. Hospital do Rim e Hipertensão. Departamento de Patologia. São Paulo, SP, Brasil.
Universidade Federal de Minas Gerais. Centro de Microscopia Eletrônica. Instituto de Nefropatologia. Belo Horizonte, MG, Brasil.
Universidade Federal de Minas Gerais. Centro de Microscopia Eletrônica. Instituto de Nefropatologia. Belo Horizonte, MG, Brasil.
Universidade Federal da Bahia. Instituto de Computação. Laboratório de Pesquisa de Visão Inteligente. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Feira de Santana, BA, Brasil.
Universidade de Brasília. Departamento de Ciência da Computação. Brasília, DF, Brasil.
Universidade Federal da Bahia. Departamento de Patologia. Salvador, BA, Brasil.
Fundação Oswaldo Ramos. Hospital do Rim e Hipertensão. Departamento de Patologia. São Paulo, SP, Brasil.
Universidade Federal de Minas Gerais. Centro de Microscopia Eletrônica. Instituto de Nefropatologia. Belo Horizonte, MG, Brasil.
Universidade Federal de Minas Gerais. Centro de Microscopia Eletrônica. Instituto de Nefropatologia. Belo Horizonte, MG, Brasil.
Universidade Federal da Bahia. Instituto de Computação. Laboratório de Pesquisa de Visão Inteligente. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Feira de Santana, BA, Brasil.
Universidade de Brasília. Departamento de Ciência da Computação. Brasília, DF, Brasil.
Abstract
Podocyte degenerative changes are common in various kidney diseases, and their accurate identification is crucial for pathologists to diagnose and treat such conditions. However, this can be a difficult task, and previous attempts to automate the identification of podocytes have not been entirely successful. To address this issue, this study proposes a novel approach that combines pathologists’ expertise with an automated classifier to enhance the identification of podocytopathies. The study involved building a new dataset of renal glomeruli images, some with and others without podocyte degenerative changes, and developing a convolutional neural network (CNN) based classifier. The results showed that our automated classifier achieved an impressive 90.9% f-score. When the pathologists used as an auxiliary tool to classify a second set of images, the medical group’s average performance increased significantly, from 91.4±12.5 % to 96.1±2.9 % of f-score. Fleiss’ kappa agreement among the pathologists also increased from 0.59 to 0.83. Conclusion: These findings suggest that automating this task can bring benefits for pathologists to correctly identify images of glomeruli with podocyte degeneration, leading to improved individual accuracy while raising agreement in diagnosing podocytopathies. This approach could have significant implications for the diagnosis and treatment of kidney diseases. Clinical impact: The approach presented in this study has the potential to enhance the accuracy of medical diagnoses for detecting podocyte abnormalities in glomeruli, which serve as biomarkers for various glomerular diseases.
Keywords
LesionsMedical diagnostic imaging
Training
Image segmentation
Diseases
Computational modeling
Kidney
Share