Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/13545
HIV-1 TROPISM DETERMINES DIFFERENT MUTATION PROFILES IN PROVIRAL DNA
Nucleotide sequencing
Coreceptors
Amino acid substitution
Reverse transcription
Substitution mutation
Viral genomics
Host cells
Author
Affilliation
Universidade Federal Rural do Rio de Janeiro. Departamento de Microbiologia e Imunologia Veterinária. Rio de Janeiro, RJ, Brasil / Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Geno mica e Biologia Computacional. Belo Horizonte, MG, Brasil
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Laboratório de Biocomplexidade e Genômica Evolutiva. São Paulo, SP, Brasil / Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Informática em Saúde. São Paulo, SP, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil / Universidade Federal de São Paulo. Escola Paulista de Medicina. São Paulo, SP, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Geno mica e Biologia Computacional. Belo Horizonte, MG, Brasil
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Grupo de Genômica e Biologia Computacional. Belo Horizonte, MG, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Laboratório de Biocomplexidade e Genômica Evolutiva. São Paulo, SP, Brasil / Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Informática em Saúde. São Paulo, SP, Brasil.
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil / Universidade Federal de São Paulo. Escola Paulista de Medicina. São Paulo, SP, Brasil.
Abstract
In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.
Keywords
HIV-1Nucleotide sequencing
Coreceptors
Amino acid substitution
Reverse transcription
Substitution mutation
Viral genomics
Host cells
Share