Author | Carvalho, Paulo C. | |
Author | Fischer, Juliana S. G. | |
Author | Chen, Emily I. | |
Author | Domont, Gilberto B. | |
Author | Carvalho, Maria G. C. | |
Author | Degrave, Wim M. | |
Author | Yates, John R. | |
Author | Barbosa, Valmir C. | |
Access date | 2019-01-15T11:38:05Z | |
Available date | 2019-01-15T11:38:05Z | |
Document date | 2009 | |
Citation | CARVALHO, Paulo C. et al. GO Explorer: a gene-ontology tool to aid in the interpretation of shotgun proteomics data. Proteome Science, v. 7, n. 6, p. 1-11, Feb. 2009. | pt_BR |
ISSN | 1477-5956 | pt_BR |
URI | https://www.arca.fiocruz.br/handle/icict/31032 | |
Language | eng | pt_BR |
Publisher | BioMed Central | pt_BR |
Rights | open access | |
Subject in Portuguese | GO Explorer | pt_BR |
Subject in Portuguese | Ferramenta de ontologia genética | pt_BR |
Subject in Portuguese | Dados de proteômica de espingarda | pt_BR |
Subject in Portuguese | Interpretação | pt_BR |
Title | GO Explorer: a gene-ontology tool to aid in the interpretation of shotgun proteomics data | pt_BR |
Type | Article | pt_BR |
DOI | 10.1186/1477-5956-7-6 | |
Abstract | Background: Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Results: Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. Conclusion: GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab. | pt_BR |
Affilliation | Universidade Federal do Rio de Janeiro. Programa de Engenharia de Sistemas e Ciência da Computação. Rio de janeiro, RJ, Brasil / The Scripps Research Institute. Department of Chemical Physiology. La Jolla, USA. | pt_BR |
Affilliation | The Scripps Research Institute. Department of Chemical Physiology. La Jolla, USA / Universidade Federal do Rio de Janeiro. Instituto de Química. Rio de Janeiro, RJ, Brasil. | pt_BR |
Affilliation | The Scripps Research Institute. Department of Chemical Physiology. La Jolla, USA / Stony Brook University. Department of Pharmacological Sciences. Stony Brook, NY, USA. | pt_BR |
Affilliation | Universidade Federal do Rio de Janeiro. Instituto de Química. Rio de Janeiro, RJ, Brasil. | pt_BR |
Affilliation | Universidade Federal do Rio de Janeiro. Instituto de Biofísica Carlos Chagas Filho. Rio de Janeiro, RJ, Brasil. | pt_BR |
Affilliation | Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ. Brasil. | pt_BR |
Affilliation | The Scripps Research Institute. Department of Chemical Physiology. La Jolla, USA. | pt_BR |
Affilliation | Universidade Federal do Rio de Janeiro. Programa de Engenharia de Sistemas e Ciência da Computação. Rio de Janeiro, RJ, Brasil. | pt_BR |
Subject | GO Explorer | pt_BR |
Subject | Gene-ontology tool | pt_BR |
Subject | Shotgun proteomics data | pt_BR |
Subject | Interpretation | pt_BR |