Author | Miranda, José Garcia Vivas | |
Author | Silva, Mateus Souza | |
Author | Bertolino, José Gabriel | |
Author | Vasconcelos, Rodrigo Nogueira | |
Author | Cambui, Elaine Cristina Barbosa | |
Author | Araújo, Marcio Luis Valença | |
Author | Saba, Hugo | |
Author | Costa, Diego Pereira | |
Author | Duverger, Soltan Galano | |
Author | Oliveira, Matheus Teles de | |
Author | Araújo Neto, Hildebrando Simões de | |
Author | Rocha, Washington de Jesus Sant’anna Franca | |
Author | Jorge, Daniel Cardoso Pereira | |
Author | Oliveira, Juliane Fonseca de | |
Author | Andrade, Roberto Fernandes Silva | |
Author | Rosário, Rafael Silva do | |
Access date | 2021-08-16T12:31:01Z | |
Available date | 2021-08-16T12:31:01Z | |
Document date | 2021 | |
Citation | MIRANDA, José Garcia Vivas et al. Scaling effect in COVID-19 spreading: The role of heterogeneity in a hybrid ODE-network model with restrictions on the inter-cities flow. Physica, D, p. 1-8, 2021. | pt_BR |
ISSN | 0167-2789 | pt_BR |
URI | https://www.arca.fiocruz.br/handle/icict/48628 | |
Description | Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. | pt_BR |
Sponsorship | National Council
of Technological and Scientific Development, CNPq, Brazil
(grant numbers 310133/2016-5, 307828/2018-2, 431990/2018-2
and 313423/2019-9, 422561/2018-5 and 304257/2019-2). RFSA
acknowledges the support of the National Institute of Science
and Technology for Complex Systems (INCT-SC Brazil). | pt_BR |
Language | eng | pt_BR |
Publisher | Elsevier | pt_BR |
Rights | open access | pt_BR |
Subject in Portuguese | COVID-19 | pt_BR |
Subject in Portuguese | SARS-CoV-2 | pt_BR |
Subject in Portuguese | Epidemias | pt_BR |
Subject in Portuguese | População | pt_BR |
Title | Scaling effect in COVID-19 spreading: The role of heterogeneity in a hybrid ODE-network model with restrictions on the inter-cities flow | pt_BR |
Type | Article | pt_BR |
DOI | 10.1016/j.physd.2020.132792 | pt_BR |
Abstract | The new Covid-19 pandemic has left traces of suffering and devastation to individuals of almost all
countries worldwide and severe impact on the global economy. Understanding the clinical characteristics,
interactions with the environment, and the variables that favor or hinder its dissemination help
the public authorities in the fight and prevention, leading for a rapid response in society. Using models
to estimate contamination scenarios in real time plays an important role. Population compartments
models based on ordinary differential equations (ODE) for a given region assume two homogeneous
premises, the contact mechanisms and diffusion rates, disregarding heterogeneous factors as different
contact rates for each municipality and the flow of contaminated people among them. This work
considers a hybrid model for covid-19, based on local SIR models and the population flow network
among municipalities, responsible for a complex lag dynamic in their contagion curves. Based on
actual infection data, local contact rates (β) are evaluated. The epidemic evolution at each municipality
depends on the local SIR parameters and on the inter-municipality transport flow. When heterogeneity
of β values and flow network are included, forecasts differ from those of the homogeneous ODE
model. This effect is more relevant when more municipalities are considered, hinting that the latter
overestimates new cases. In addition, mitigation scenarios are assessed to evaluate the effect of earlier
interventions reducing the inter-municipality flux. Restricting the flow between municipalities in
the initial stage of the epidemic is fundamental for flattening the contamination curve, highlighting
advantages of a contamination lag between the capital curve and those of other municipalities in the
territories. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Estadual de Feira de Santana. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Affilliation | Instituto Federal de Ciência e Tecnologia da Bahia. Santo Amaro, BA, Brasil. | pt_BR |
Affilliation | Universidade do Estado da Bahia. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Federal da Bahia. Pavilhão de Aulas Raul Seixas. Programa de Pós-graduação em Energia e Ambiente. Salvador, BA, Brasil | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Estadual de Feira de Santana. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Estadual de Feira de Santana. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Estadual de Feira de Santana. Salvador, BA, Brasil. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Affilliation | Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Center of Data and Knowledge Integration for Health.Parque Tecnológico da Edf. Tecnocentro. Salvador, BA, Brazil / Universidade do Porto. Centro de Matemática. Lisboa, Portugal. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Center of Data and Knowledge Integration for Health.Parque Tecnológico da Edf. Tecnocentro. Salvador, BA, Brazil. | pt_BR |
Affilliation | Universidade Federal da Bahia. Instituto de Física. Salvador, BA, Brasil. | pt_BR |
Subject | COVID-19 | pt_BR |
Subject | SARS-CoV-2 | pt_BR |
Subject | SIR model | pt_BR |
Subject | Transport network | pt_BR |
xmlui.metadata.dc.subject.ods | 03 Saúde e Bem-Estar | |