Author | Azevedo, Leonardo C. de | |
Author | Pereira, Cecilia Hedin | |
Author | Lent, Roberto | |
Access date | 2013-02-20T17:14:42Z | |
Available date | 2013-02-20T17:14:42Z | |
Document date | 1997 | |
Citation | AZEVEDO, Leonardo C. de; HEIDIN-PEREIRA, Cecília; LENT, Roberto. Callosal neurons in the cingulate cortical plate and subplate of human fetuses. The Journal of Comparative Neurology, New York, v. 386, n.1, p. 60-70, Sept. 1997. | pt_BR |
ISSN | 0021-9967 | |
URI | https://www.arca.fiocruz.br/handle/icict/6321 | |
Sponsorship | FINEP | pt_BR |
Language | eng | pt_BR |
Publisher | Wiley-Liss | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Aboitiz, F., A.B. Scheibel, R.S. Fisher, and E. Zaidel (1992) Fiber composition
of the human corpus callosum. Brain Res. 598:143–153. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Aggoun-Zouaoui, D., and G.M. Innocenti (1994) Juvenile visual callosal
axons in kittens display origin- and fate-related morphology and
distribution of arbors. Eur. J. Neurosci. 6:1846–1863. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Antonini, A., and C.J. Shatz (1990) Relation between putative transmitter
phenotypes and connectivity of subplate neurons during cerebral cortex
development. Eur. J. Neurosci. 2:744–761. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Auladell, C., A. Martinez, S. Alcantara, H. Supe`r, and E. Soriano (1995)
Migrating neurons in the developing cerebral cortex of the mouse send
callosal axons. Neuroscience 64:1091–1103. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Becker, L.E., D.L. Armstrong, F. Chan, and M.M. Wood (1984) Dendritic
development in human occipital cortical neurons. Dev. Brain Res.
13:117–124. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Berbel, P., and G.M. Innocenti (1988) The development of the corpus
callosum in cats: A light- and electron-microscopic study. J. Comp.
Neurol. 276:132–156. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Chalupa, L.M., and H.P. Killackey (1989) Process elimination underlies
ontogenetic change in the distribution of callosal projection neurons in
the postcentral gyrus of the fetal rhesus monkey. Proc. Natl. Acad. Sci.
USA86:1076–1079. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Chow, K.L., H.D. Baumbach, and R. Lawson (1981) Callosal projections of
the striate cortex in the neonatal rabbit. Exp. Brain Res. 42:122–126. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Chun, J.J.M., M.J. Nakamura, and C.J. Shatz (1987) Transient cells of the
developing mammalian telencephalon are peptide immunoreactive
neurons. Nature 325:617–620. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Code, R.A., and J.A. Winer (1985) Commissural neurons in layer III of cat
primary auditory cortex (AI): Pyramidal and non-pyramidal cell input.
J. Comp. Neurol. 242:485–510. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | deAzevedo, L.C., R. Lent, and C. Hedin-Pereira (1995) Callosal neurons and
glial cells in the developing cerebral cortex of human fetuses. Neurosci.
Abstr. 21:2021. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | deAzevedo, L.C., M.M. Rocha, C. Hedin-Pereira, J.G. Franca, and R. Lent
(1996) The emergence of NADPH-diaphorase-positive neurons in the
cortical subplate of human fetuses. Neurosci. Abstr. 22:1973. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | De Carlos, J.A., and D.D.M. O’Leary (1992) Growth and targeting of
subplate axons and establishment of major cortical pathways. J.
Neurosci. 12:1194–1211. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Diao, Y-C., and K-F. So (1991) Dendritic morphology of visual callosal
neurons in the golden hamster. Brain Behav. Evol. 37:1–9. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Dursteler, M.R., C. Blakemore, and L.J. Garey (1979) Projections to the
visual cortex in the golden hamster. J. Comp. Neurol. 183:185–204. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Games, K.D., and J.A. Winer (1988) Layer V in rat auditory cortex:
projections to the inferior colliculus and contralateral cortex. Hearing
Res. 34:1–26. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Godement, P., J. Vanselow, S. Thanos, and F. Bonhoeffer (1987) A study of
developing visual systems with a new method of staining neurones and
their processes in fixed tissue. Development 101:697–713. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Hallman, L.E., B.R. Schofield, and C-S. Lin (1988) Dendritic morphology
and axon collaterals of corticotectal, corticopontine, and callosal neurons
in layer V of primary visual cortex of the hooded rat. J. Comp.
Neurol. 272:149–160. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Honig, M.G., and R.I. Hume (1989) Dil and DiO: Versatile fluorescent dyes
for neuronal labelling and pathway tracing. Trends Neurosci. 12:333–
341. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Hu¨ bener, M., and J. Bolz (1988) Morphology of identified projection neurons
in layer V of rat visual cortex. Neurosci. Lett. 94:76–81. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Hughes, C.M., and A. Peters (1990) Morphological evidence for callosally
projecting nonpyramidal neurons in rat visual cortex. Anat. Embryol.
182:591–604. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Innocenti, G.M. (1981) Growth and reshaping of axons in the establishment
of visual callosal connections. Science 212:824–827. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Innocenti, G.M., and R. Caminiti (1980) Postnatal shaping of callosal
connections from sensory areas. Exp. Brain Res. 38:381–394. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Innocenti, G.M., and S.K. Clarke (1984) The organization of immature
callosal connections. J. Comp. Neurol. 230:287–309. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Innocenti, G.M., L. Fiore, and R. Caminiti (1977) Exuberant projection into
the corpus callosum from the visual cortex of newborn cats. Neurosci.
Lett. 4:237–242. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Ivy, G.O., and H.P. Killackey (1981) The ontogeny of the distribution of
callosal projection neurons in the rat parietal cortex. J. Comp. Neurol.
195:367–389. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Jacobson, S., and J.Q. Trojanowski (1974) The cells of origin of the corpus
callosum in rat, cat, and rhesus monkey. Brain Res. 74:149–155. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Jouandet, M.L., L.J. Garey, and H-P. Lipp (1984) Distribution of the cells of
origin of the corpus callosum and anterior commissure in the marmoset
monkey. Anat. Embryol. 169:45–59. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Killackey, H.P., and L.M. Chalupa (1986) Ontogenetic change in the
distribution of callosal projection neurons in the postcentral gyrus of
the fetal rhesus monkey. J. Comp. Neurol. 244:331–348. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Koenderink, M.J.Th., H.B.M. Uylings, and L. Mrzljak (1994) Postnatal
maturation of the layer III pyramidal neurons in the human prefrontal
cortex:Aquantitative Golgi analysis. Brain Res. 653:173–182. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Koenderink, M.J.Th., and H.B.M. Uylings (1995) Postnatal maturation of
layer V pyramidal neurons in the human prefrontal cortex: A quantitative
Golgi analysis. Brain Res. 678:233–243. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Koester, S.E., and D.D.M. O’Leary (1992) Functional classes of cortical
projection neurons develop dendritic distinctions by class-specific sculpting
of an early common pattern. J. Neurosci. 12:1382–1393. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Koester, S.E., and D.D.M. O’Leary (1994) Axons of early generated neurons
in cingulate cortex pioneer the corpus callosum. J. Neurosci. 14:6608–
6620. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kostovic, I. (1990) Structural and histochemical reorganization of the
human prefrontal cortex during perinatal and postnatal life. Progr.
Brain Res. 85:223–240. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kostovic, I., and P.S. Goldman-Rakic (1983) Transient cholinesterase
staining in the mediodorsal nucleus of the thalamus and its connections
in the developing human and monkey brain. J. Comp. Neurol. 219:431–
447. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kostovic, I., and J. Krmpotic (1976) Early prenatal ontogenesis of the
neuronal connections in the interhemispheric cortex of the human
gyrus cinguli. Verh. Anat. Ges. 70:305–316. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kostovic, I., and P. Rakic (1984) Development of prestriate visual projections
in the monkey and human fetal cerebrum revealed by transient
cholinesterase staining. J. Neurosci. 4:25–42. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kostovic, I., and P. Rakic (1990) Developmental history of the transient
subplate zone in the visual and somatosensory cortex of the macaque
monkey and human brain. J. Comp. Neurol. 297:441–470. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kostovic, I., J. Skavic, and D. Strinovic (1988) Acetylcholinesterase in the
human frontal associative cortex during the period of cognitive development:
Early laminar shifts and late innervation of pyramidal neurons.
Neurosci. Lett. 90:107–112. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Krmpotic-Nemanic, J., I. Kostovic, Z. Kelovic, and D. Nemanic (1980)
Development of acetylcholinesterase (AChE) staining in human fetal
auditory cortex. Acta Otolaryngol. 89:388–392. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Krmpotic-Nemanic, J., I. Kostovic, Z. Kelovic, D. Nemanic, and L. Mrzljak
(1983) Development of the human fetal auditory cortex: Growth of
afferent fibers. Acta Anat. 116:69–73. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | LaMantia, A.S., and P. Rakic (1990) Axon overproduction and elimination
in the corpus callosum of the developing Rhesus monkey. J. Neurosci.
10:2156–2175. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lent, R., C. Hedin-Pereira, J.R.L. Menezes, and S. Jhaveri (1990) Neurogenesis
and development of callosal and intracortical connections in the
hamster. Neuroscience 38:21–37. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lent, R., L. deAzevedo, and C. Hedin-Pereira (1995) Callosally-projecting
subplate cells in fetal human brains. Neurosci. Abstr. 21:2021. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Marin-Padilla, M. (1969) Origin of the pericellular baskets of the pyramidal
cells of the human motor cortex:AGolgi study. Brain Res. 14:633–646. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Marin-Padilla, M. (1970a) Prenatal and early postnatal ontogenesis of the
human motor cortex: a Golgi study. I. The prenatal sequential development
of the cortical layers. Brain Res. 23:167–183. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Marin-Padilla, M. (1970b) Prenatal and early postnatal ontogenesis of the
human motor cortex: A Golgi study. II. The basket-pyramidal cell
system. Brain Res. 23:185–191. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Marin-Padilla, M. (1992) Ontogenesis of the pyramidal cell of the mammalian
neocortex and developmental cytoarchitectonics: A unifying theory.
J. Comp. Neurol. 321:223–240. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | McConnell, S.K., A. Ghosh, and C.J. Shatz (1989) Subplate neurons pioneer
the first axon pathway from the cerebral cortex. Science 245:978–982. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Mrzljak, L., H.B.M. Uylings, I. Kostovic, and C.G. Van Eden (1988)
Prenatal development of neurons in the human prefrontal cortex. I. A
qualitative Golgi study. J. Comp. Neurol. 271:355–386. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Mrzljak, L., H.B.M. Uylings, C.G. Van Eden, and M. Juda´s (1990) Neuronal
development in human prefrontal cortex in prenatal and postnatal
stages. Prog. Brain Res. 85:185–222. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Mrzljak, L., H.B.M. Uylings, I. Kostovic, and C.G. Van Eden (1992)
Prenatal development of neurons in the human prefrontal cortex. II. A
quantitative Golgi study. J. Comp. Neurol. 316:485–496. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | O’Leary, D.D.M., B.B. Stanfield, and W.M. Cowan (1981) Evidence that the
early postnatal restriction of the cells of origin of the callosal projection
is due to the elimination of axonal collaterals rather than to the death of
neurons. Dev. Brain Res. 1:607–617. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Perry, E.K., C.J. Smith, J.R. Atack, J.M. Candy,M. Johnson, and R.H. Perry
(1986) Neocortical cholinergic enzyme and receptor activities in the
human fetal brain. J. Neurochem. 47:1262–1269. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Peters, A., B.R. Payne, and K. Josephson (1990) Transcallosal nonpyramidal
cell projections from visual cortex in the cat. J. Comp.
Neurol. 302:124–142. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Purpura, D.P. (1975) Dendritic differentiation in human cerebral cortex:
Normal and aberrant developmental patterns. In G.W. Kreutzberg (ed):
DEVELOPING CALLOSAL NEURONS IN HUMANS 69
Physiology and Pathology of Dendrites. Advances in Neurology, Vol. 12.
New York: Raven Press, pp. 91–116. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Rakic, P., and P.I. Yakovlev (1968) Development of the corpus callosum and
cavum septi in man. J. Comp. Neurol. 132:45–72. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Schwartz, M.L., P. Rakic, and P.S. Goldman-Rakic (1991) Early phenotype
expression of cortical neurons: Evidence that a subclass of migrating
neurons have callosal axons. Proc. Natl. Acad. Sci. USA 88:1354–1358. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Segraves, M.A., and A.C. Rosenquist (1982) The distribution of the cells of
origin of callosal projections in cat visual cortex. J. Neurosci. 2:1079–
1089. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Sripanidkulchai, K., and J.M. Wyss (1987) The laminar organization of
efferent neuronal bodies in the retrosplenial granular cortex. Brain Res.
406:255–269. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Van Essen, D.C., W.T. Newsome, and J.L. Bixby (1982) The pattern of
interhemispheric connections and its relationships to extrastriate
visual areas in the macaque monkey. J. Neurosci. 2:265–283. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Vercelli, A., F. Assal, and G.M. Innocenti (1992) Emergence of callosallyprojecting
neurons with stellate morphology in the visual cortex of the
kitten. Exp. Brain Res. 90:346–358. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Wise, S.P., and E.G. Jones (1976) The organization and postnatal development
of the commissural projection of the rat somatic sensory cortex. J.
Comp. Neurol. 168:313–343. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Yorke, C.H., and V.S. Caviness (1975) Interhemispheric neocortical connections
of the corpus callosum in the normal mouse: A study based
on anterograde and retrograde methods. J. Comp. Neurol. 164:
233–246. | pt_BR |
Rights | restricted access | |
Title | Callosal neurons in the cingulate cortical plate and subplate of human fetuses | pt_BR |
Type | Article | |
DOI | 10.1002/(SICI)1096-9861(19970915)386:1<60::AID-CNE7>3.0.CO;2-B | |
Abstract | Given the scarcity of data on the development of the cerebral cortex and its connections in man, four brains of human fetuses at 25, 26, 30, and 32 weeks postovulation were used to investigate the following: 1) the radial distribution of callosal neurons in the cingulate cortex at the immediate postmigratory period; 2) the existence of callosally projecting neurons in the cortical subplate; and 3) the dendritic morphology of developing callosal neurons. The carbocyanine dye (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) (DiI) was used as a fluorescent postmortem tracer for the identification and morphological description of callosal neurons, 4-6 months after the insertion of DiI crystals at the callosal midplane. Sixty-one completely labeled neurons were selected for microscopical analysis, drawn by use of a camera lucida and photographed. The main findings were the following: 1) the human cingulate cortex at 25-32 weeks postovulation contains callosally projecting neurons both in the cortical plate and in the subplate; 2) callosal cells in the plate are mostly spiny pyramids with somata distributed uniformly throughout the depth of the plate, irrespective of rostrocaudal position. They have well-differentiated basal dendrites and apical dendrites that consistently ramify within layer 1; 3) subplate callosal cells are smooth neurons of diverse dendritic morphology, distributed widely throughout the subplate depth. They were classified into four cell types according to the dendritic morphology: radially oriented, horizontally oriented, multipolars, and inverted pyramids. These findings extend to the human brain some of the evidence obtained in animals concerning the development of the cerebral cortex, especially those that are relevant to the formation of a transitory circuitry in the subplate. | pt_BR |
Affilliation | Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Departamento de Anatomia. Rio de Janeiro, RJ, Brasil. | pt_BR |
Subject | Corpus Callosum | pt_BR |
Subject | Cortical Development | pt_BR |
Subject | Limbic System | pt_BR |
Subject | Interhemispheric Connections | pt_BR |
Subject | Human Brain | pt_BR |
DeCS | Córtex Cerebral | pt_BR |
DeCS | Corpo Caloso | pt_BR |
DeCS | Feto | pt_BR |
DeCS | Giro do Cíngulo | pt_BR |
Embargo date | 2030-12-31 | |