Author | Lazarev, V. V. | |
Author | Pontes, A. | |
Author | Mitrofanov, A. A. | |
Author | Azevedo, L. C. de | |
Access date | 2013-05-08T19:31:53Z | |
Available date | 2013-05-08T19:31:53Z | |
Document date | 2010 | |
Citation | LAZAREV, V. V. et al. Interhemispheric asymmetry in EEG photic driving coherence in childhood autism. Clin. neurophysiol., Limerick, v. 121, n. 2, p. 145-152, feb. 2010. | pt_BR |
URI | https://www.arca.fiocruz.br/handle/icict/6482 | |
Language | eng | pt_BR |
Publisher | Elsevier | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Arns M, Peters S, Breteler R, Verhoeven L. Different brain activation patterns in
dyslexic children: evidence from EEG power and coherence patterns for the
double-deficit theory of dyslexia. J Integr Neurosci 2007;53:63–88. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Baron-Cohen S, Knickmeyer RC, Belmonte MK. Sex differences in the brain:
implications for explaining autism. Science 2005;310:819–23. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Bashina VM, Gorbachevskaia NL, Simashkova NV, Iznak AF, Kozhushko LF, Iakupova
LP. The clinical, neurophysiological and differential diagnostic aspects in a study
of severe forms of early childhood autism. Zh Nevropatol Psikhiatr
1994;94:68–71. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Bendat JS, Piersol AG. Random data: analysis and measurement procedures. 3rd
ed. New York: Wiley; 2000. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Beydoun A, Schechter SH, Nasreddine W, Drury I. Responses to photic stimulation in
patients with occipital spikes. Electroenceph Clin Neurophysiol 1998;107:13–7. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, et al.
Superior temporal sulcus anatomical abnormalities in childhood autism: a
voxel-based morphometry MRI study. Neuroimage 2004;23:364–9. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Cantor DS, Thatcher RW, Hrybyk M, Kaye H. Computerized EEG analyses of autistic
children. J Autism Dev Disord 1986;16:169–87. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Chan AS, Sze SL, Cheung M. Quantitative electroencephalographic profiles for
children with autistic spectrum disorder. Neuropsychology 2007;21:74–81. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic
spectrum disorder. Clin Neurophysiol 2008;119:1002–9. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Danilova NN. Reactions of cerebral electrical activity in response to flickering light
coinciding with the diapason of alpha-rhythm frequency. Zh Vyssh Nerv Deyat
1961;11:12–21. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Dawson G, Warrenburg S, Fuller P. Cerebral lateralization in individuals diagnosed
as autistic in early childhood. Brain Lang 1982;15:353–68. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Filipek PA, Accardo PJ, Baranek GT, Cook Jr EH, Dawson G, Gordon B, et al. The
screening and diagnosis of autistic spectrum disorders. J Autism Dev Disord
1999;29:439–84. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | French CC, Beaumont JC. A critical review of EEG coherence studies of hemisphere
function. Int J Psychophysiol 1984;1:241–54.
Gronseth GS, Greenberg MK. The utility of the electroencephalogram in the
evaluation of patients presenting with headache: a review of the literature.
Neurology 1995;45:1263–7. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Harrison DW, Demaree HA, Shenal BV, Everhart DE. QEEG assisted
neuropsychological evaluation of autism. Int J Neurosci 1998;93:133–40. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Hirota T, Yagyu T, Pascual-Marqui RD, Saito N, Kinoshita T. Spatial structure of brain
electric fields during intermittent photic stimulation. Neuropsychobiology
2001;44:108–12. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Jenkins GM, Watts DG. Spectral analysis and its application. San Francisco: Holden-
Day; 1968. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Jin Y, Castellanos A, Solis ER, Potkin SG. EEG resonant responses in schizophrenia: a
photic driving study with improved harmonic resolution. Schizophr Res
2000;44:213–20. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | John ER, Schwartz EL. The neurophysiology of information processing and cognition.
Ann Rev Psychol 1978;29:1–29. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kikuchi M, Wada Y, Takeda T, Oe H, Hashimoto T, Koshino Y. EEG harmonic
responses to photic stimulation in normal aging and Alzheimer’s disease:
differences in interhemispheric coherence. Clin Neurophysiol 2002;113:
1045–51. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing
hypothesis. Brain Res Rev 2007;53:63–88. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Kujala T, Lepisto T, Nieminen-von Wendt T, Naatanen P, Naatanen R. Neurophysiological
evidence for cortical discrimination impairment of prosody in Asperger
syndrome. Neurosci Lett 2005;383:260–5. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV. The relationship of theory and methodology in EEG studies of mental
activity. Int J Psychophysiol 2006;62:384–93. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Sviderskaya NE, Khomskaya ED. Changes in spatial synchronization of
biopotentials during various types of intellectual activity. Hum Physiol, vol 3.
New York: Plenum Press; 1977, p. 187–194 [a translation of Fiziol Cheloveka]. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Simpson DM, Schubsky BM, deAzevedo LC. Photic driving in the
electroencephalogram of children and adolescents: harmonic structure and
relation to the resting state. Braz J Med Biol Res 2001;34:1573–84. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Pontes A, deAzevedo LC. Right hemisphere deficit in EEG photic driving
reactivity in childhood autism. Abstract. Int J Psychophysiol 2004a;54:79. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Infantosi AFC, Valencio-de-Campos D, deAzevedo LC. Topographic
aspects of photic driving in the electroencephalogram of children and
adolescents. Braz J Med Biol Res 2004b;37:879–91. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Genofre MA, deAzevedo LC. EEG photic driving reactivity in partial
epilepsy Abstract. Psychophysiology 2006;43:S57. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Genofre MA, Pontes A, deAzevedo LC. Latent EEG characteristics of the
brain development via photic driving reaction in normal children and
neurologic patients. Abstract. Int J Psychophysiol 2008;69:156–7. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Lazarev VV, Pontes A, deAzevedo LC. EEG photic driving: Right-hemisphere reactivity
deficit in childhood autism. A pilot study. Int J Psychophysiol 2009;71:177–83. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Livanov MN. Spatial organization of cerebral processes. New York: Wiley; 1977. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | McKelvey JR, Lambert R, Mottron L, Shevell MI. Right-hemisphere dysfunction in
Asperger’s syndrome. J Child Neurol 1995;10:310–4. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Miranda de Sa AMFL, Infantosi AFC, Simpson DM. A statistical technique for
measuring synchronism between cortical regions in the EEG during rhythmic
stimulation. IEEE Trans Biomed Eng 2001;48:1211–5. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Mundy-Castle AC. An analysis of central responses to photic stimulation in normal
adults. Electroenceph Clin Neurophysiol 1953(Suppl. 5):1–22. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Murias M,Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected
in EEG coherence in individuals with autism. Biol Psychiatry 2007;62:270–3. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Orekhova EV, Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, Elam M.
Excess of high frequency electroencephalogram oscillations in boys with
autism. Biol Psychiatry 2007;62:1022–9. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Ozonoff S, Miller JN. An exploration of right-hemisphere contributions to the
pragmatic impairments of autism. Brain Lang 1996;52:411–34. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Sabbagh MA. Communicative intentions and language: evidence from righthemisphere
damage and autism. Brain Lang 1999;70:29–69. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Scheuler W. Clinical significance of increased reaction to photostimulation in the
alpha frequency range. EEG EMG Z Elektroenzephalogr Elektromyogr
Verwandte Geb 1983;14:143–53. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Senju A, Tojo Y, Yaguchi K, Hasegawa T. Deviant gaze processing in children with
autism: an ERP study. Neuropsychologia 2005;43:1297–306. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Siegal M, Carrington J, Radel M. Theory of mind and pragmatic understanding
following right hemisphere damage. Brain Lang 1996;53:40–50. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Small JG. Psychiatric disorders and EEG. In: Niedermeyer E, Lopes da Silva FH,
editors. Electroencephalography: basic principles clinical applications and
related fields. 2nd ed. Baltimore: Urban-Schwarzenberg; 1987. p. 523–39. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, Elam M, et al.
Abnormal EEG lateralization in boys with autism. Clin Neurophysiol
2007;118:1842–54. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Takahashi T. Activation methods. In: Niedermeyer E, Lopes da Silva FH, editors.
Electroencephalography: basic principles, clinical applications and related
fields. 2nd ed. Baltimore: Urban-Schwarzenberg; 1987. p. 209–27. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Wada Y, Nanbu Y, Kadoshima R, Jiang ZY, Koshino Y, Hashimoto T. Interhemispheric
EEG coherence during photic stimulation: | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Wada Y, Nanbu Y, Kikuchi M, Koshino Y, Hashimoto T. Aberrant functional
organization in schizophrenia: analysis of EEG coherence during rest and photic
stimulation in drug-naive patients. Neuropsychobiology 1998;38:63–9. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Waiter GD, Williams JHG, Murray AD, Gilchrist A, Perrett DI, Whiten A. Structural
white matter deficits in high-functioning individuals with autistic spectrum
disorder: a voxel-based investigation. Neuroimage 2005;24:455–61. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Wechsler D. Wechsler intelligence scale for children (WISC-III). Manual. San
Antonio: Psychological Corporation; 1991. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Wing L. The autistic spectrum. The Lancet 1997;350:1761–6. | pt_BR |
xmlui.metadata.dc.relation.isbasedon | Zaveri HP, Williams WJ, Sackellares JC, Beydoun A, Duckrow RB, Spencer SS.
Measuring the coherence of intracranial electroencephalograms. Clin
Neurophysiol 1999;110:1717–25. | pt_BR |
Rights | restricted access | |
Title | Interhemispheric asymmetry in EEG photic driving coherence in childhood autism | pt_BR |
Type | Article | |
DOI | 10.1016/j.clinph.2009.10.010 | |
Abstract | Objective: Examination of the EEG photic driving coherence during intermittent photic stimulation in
autistic patients with relatively intact verbal and intellectual functions in order to enhance the likely
latent interhemispheric asymmetry in neural connectivity.
Methods: Fourteen autistic boys, aged 6–14 years, free of drug treatment, with I.Q. 91.4 ± 22.8, and 19
normally developing boys were subject to stimulation of 12 fixed frequencies of 3–27 Hz. The number
of high coherent connections (HCC) (coherence >0.6–0.8) was estimated among 7 leads in each hemisphere.
Results: In contrast to the spectral characteristics showing the right hemisphere deficit in the photic driving
reactivity, the number of HCC differentiated the groups only in the left hemisphere where it was
higher in autistics at the EEG frequencies corresponding to those of stimulation at 6–27 Hz without
asymmetry at other frequencies, the left-side prevalence increasing with frequency. No asymmetry
was observed in the resting state.
Conclusions: Spectral and coherence characteristics of the EEG photic driving show different aspects of
latent abnormal interhemispheric asymmetry in autistics: the right hemisphere ‘‘hyporeactivity” and
potential ‘‘hyperconectivity” of likely compensatory nature in the left hemisphere.
Significance: The EEG photic driving can reveal functional topographic alterations not present in the
spontaneous EEG. | pt_BR |
Affilliation | Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Laboratório de Neurobiologia e Neurofisiologia Clínica. Rio de Janeiro, RJ, Brasil | pt_BR |
Subject | Autism | pt_BR |
Subject | Children | pt_BR |
Subject | EEG Photic Driving | pt_BR |
Subject | Coherence | pt_BR |
Subject | Left Hemisphere | pt_BR |
Subject | Right Hemisphere | pt_BR |
DeCS | Transtorno Autístico | pt_BR |
DeCS | Córtex Cerebral | pt_BR |
DeCS | Eletroencefalografia | pt_BR |
DeCS | Lateralidade Funcional | pt_BR |
DeCS | Estimulação Luminosa | pt_BR |