Author | Souza Filho, João Baptista de Oliveira e. | |
Author | Sanchez, Mauro | |
Author | Seixas, José Manoel de | |
Author | Maidantchik, Carmen | |
Author | Galliez, Rafael | |
Author | Moreira, Adriana Da Silva Rezende | |
Author | Da Costa, Paulo Albuquerque | |
Author | Oliveira, Martha Maria | |
Author | Harries, Anthony David | |
Author | Kritski, Afrânio Lineu | |
Access date | 2024-11-04T07:56:35Z | |
Available date | 2024-11-04T07:56:35Z | |
Document date | 2018 | |
Citation | SOUZA FILHO, João Baptista de Oliveira e.; SANCHEZ, Mauro; SANCHEZ, Mauro; SEIXAS, José Manoel de; SEIXAS, José Manoel de; MAIDANTCHIK, Carmen; GALLIEZ, Rafael; MOREIRA, Adriana Da Silva Rezende; DA COSTA, Paulo Albuquerque; OLIVEIRA, Martha Maria; HARRIES, Anthony David; KRITSKI, Afrânio Lineu. Screening for active pulmonary tuberculosis: Development and applicability of artificial neural network models. Tuberculosis, Scotland, v. 111, p. 94-94, 2018. DOI: 10.1016/J.TUBE.2018.05.012. | en_US |
ISSN | 1472-9792 | en_US |
URI | https://www.arca.fiocruz.br/handle/icict/66894 | |
Abstract in Portuguese | A tuberculose (TB) continua sendo um desafio significativo para a saúde pública, motivado pela diversidade de cenários epidemiológicos de assistência médica, como outros fatores. A triagem custo-efetiva tem importância substancial para o controle da TB, exigindo novas ferramentas de diagnóstico. Este artigo propõe uma ferramenta de suporte à decisão (DST) para triagem de pacientes com TB pulmonar (PTB) em uma clínica secundária. A DST é composta por um modelo de ressonância adaptativa (iART) para identificação de grupos de risco (baixo, médio e alto) e uma rede neural perceptron multicamadas (MLP) para classificar pacientes como PTB ativo ou inativo. Nossa ferramenta atinge uma sensibilidade geral (SE) e especificidade (SP) de 92% (IC de 95%; 79-97) e 58% (IC de 95%; 47-68), respectivamente. Os valores de SE para pacientes com esfregaço positivo e negativo são 96% (IC de 95%; 80-99) e 82% (IC de 95%; 52-95), bem como maiores que 83% (IC de 95%; 43-97) em casos de baixo e alto risco. Mesmo em cenários com prevalência de até 20%, valores preditivos negativos superiores a 95% são obtidos. O DST proposto fornece um pré-teste rápido e de baixo custo para pacientes com PTB presuntivo, o que é útil para orientar testes confirmatórios e gerenciamento de pacientes, especialmente em cenários com recursos limitados em países de baixa e média renda. | en_US |
Language | eng | en_US |
Publisher | Churchill Livingstone | en_US |
Rights | restricted access | |
MeSH | Adult | en_US |
MeSH | Bacteriological Techniques | en_US |
MeSH | Brazil | en_US |
MeSH | Databases, Factual | en_US |
MeSH | Decision Support Systems, Clinical | en_US |
MeSH | Decision Support Techniques | en_US |
MeSH | Diagnosis, Computer-Assisted | en_US |
MeSH | Female | en_US |
MeSH | Humans | en_US |
MeSH | Lung | en_US |
MeSH | Male | en_US |
MeSH | Mass Screening | en_US |
MeSH | Middle Aged | en_US |
MeSH | Mycobacterium tuberculosis | en_US |
MeSH | Neural Networks, Computer | en_US |
MeSH | Predictive Value of Tests | en_US |
MeSH | Prevalence | en_US |
MeSH | Reproducibility of Results | en_US |
MeSH | Risk Assessment | en_US |
MeSH | Risk Factors | en_US |
MeSH | Sputum | en_US |
MeSH | Tuberculosis, Pulmonary | en_US |
MeSH | Young Adult | en_US |
Subject in Portuguese | Sistemas de apoio à decisão | en_US |
Subject in Portuguese | Diagnóstico | en_US |
Subject in Portuguese | Modelos de redes neurais | en_US |
Subject in Portuguese | Tuberculose | en_US |
Title | Screening for active pulmonary tuberculosis: Development and applicability of artificial neural network models | en_US |
Type | Article | |
DOI | 10.1016/J.TUBE.2018.05.012 | |
Abstract | Tuberculosis (TB) remains a significant public health challenge, motivated by the diversity of healthcare epidemiological settings, as other factors. Cost-effective screening has substantial importance for TB control, demanding new diagnostic tools. This paper proposes a decision support tool (DST) for screening pulmonary TB (PTB) patients at a secondary clinic. The DST is composed of an adaptive resonance model (iART) for risk group identification (low, medium and high) and a multilayer perceptron (MLP) neural network for classifying patients as active or inactive PTB. Our tool attains an overall sensitivity (SE) and specificity (SP) of 92% (95% CI; 79-97) and 58% (95% CI; 47-68), respectively. SE values for smear-positive and smear-negative patients are 96% (95% CI; 80-99) and 82% (95% CI; 52-95), as well as higher than 83% (95% CI; 43-97) in low and high-risk cases. Even in scenarios with prevalence up to 20%, negative predictive values superior to 95% are obtained. The proposed DST provides a quick and low-cost pretest for presumptive PTB patients, which is useful to guide confirmatory testing and patient management, especially in settings with limited resources in low and middle-incoming countries. | en_US |
Affilliation | Electrical Engineering Program, Department of Electronics and Computer Engineering, COPPE/POLI, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Department of Public Health, School of Health Sciences, University of Brasilia, Brazil / Centre for Operational Research, The International Union Against Tuberculosis and Lung Disease, Paris, France | en_US |
Affilliation | Electrical Engineering Program, Department of Electronics and Computer Engineering, COPPE/POLI, Federal University of Rio de Janeiro, Brazil / Signal Processing Lab, Electrical Engineering Program, Alberto Coimbra Institute, Polytechnic School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Signal Processing Lab, Electrical Engineering Program, Alberto Coimbra Institute, Polytechnic School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Tuberculosis Academic Program, Medical School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Tuberculosis Academic Program, Medical School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Tuberculosis Academic Program, Medical School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Tuberculosis Academic Program, Medical School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Centre for Operational Research, The International Union Against Tuberculosis and Lung Disease, Paris, France | en_US |
Affilliation | Tuberculosis Academic Program, Medical School, Federal University of Rio de Janeiro, Brazil | en_US |
Affilliation | Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas. Rio de Janeiro, RJ, Brasil. | en_US |
Subject | Decision support systems | en_US |
Subject | Diagnosis | en_US |
Subject | Neural network models | en_US |
Subject | Tuberculosis | en_US |
e-ISSN | 1873-281X | |