Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/13031
HISTORY OF INSECTICIDE RESISTANCE OF TRIATOMINAE VECTORS
Author
Affilliation
Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Laboratório de Referência em Triatomíneos e Epidemiologia da Doença de Chagas. Belo Horizonte, MG, Brasil.
Organização Mundial de Saúde. Genebra, Suiça.
Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Laboratório de Referência em Triatomíneos e Epidemiologia da Doença de Chagas. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Laboratório de Referência em Triatomíneos e Epidemiologia da Doença de Chagas. Belo Horizonte, MG, Brasil.
Organização Mundial de Saúde. Genebra, Suiça.
Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Laboratório de Referência em Triatomíneos e Epidemiologia da Doença de Chagas. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Laboratório de Referência em Triatomíneos e Epidemiologia da Doença de Chagas. Belo Horizonte, MG, Brasil.
Abstract
In the last 15 years, different types of Triatominae resistance to different insecticides have been reported; thus, resistance may be more widespread than known, requiring better characterization and delimitation, which was the aim of this review. This review was structured on a literature search of all articles from 1970 to 2015 in the PubMed database that contained the keywords Insecticide resistance and Triatominae . Out of 295 articles screened by title, 33 texts were selected for detailed analysis. Insecticide resistance of Triatomines is a complex phenomenon that has been primarily reported in Argentina and Bolivia, and is caused by different factors (associated or isolated). Insecticide resistance of Triatominae is a characteristic inherited in an autosomal and semi-dominant manner, and is polygenic, being present in both domestic and sylvatic populations. The toxicological profile observed in eggs cannot be transposed to different stages of evolution. Different toxicological profiles exist at macro- and microgeographical levels. The insecticide phenotype has both reproductive and developmental costs. Different physiological mechanisms are involved in resistance. Studies of Triatomine resistance to insecticides highlight three deficiencies in interpreting the obtained results: I) the vast diversity of methodologies, despite the existence of a single guiding protocol; II) the lack of information on the actual impact of resistance ratios in the field; and III) the concept of the susceptibility reference lineage. Research on the biological and behavioral characteristics of each Triatominae species that has evolved resistance is required in relation to the environmental conditions of each region.
Share