Please use this identifier to cite or link to this item: https://www.arca.fiocruz.br/handle/icict/13947
Title: The Schistosome Esophagus Is a 'Hotspot' for Microexon and Lysosomal Hydrolase Gene Expression: Implications for Blood Processing.
Authors: Wilson, R. Alan
Li, Xiao Hong
MacDonald, Sandy
Neves, Leandro Xavier
Souza, Juliana Vitoriano
Leite, Luciana C. C
Farias, Leonardo Paiva
James, Sally
Ashton, Peter D
DeMarco, Ricardo
Borges, William de Castro
Affilliation: University of York. Centre for Immunology and Infection. Department of Biology. Heslington, York, United Kingdom
University of York. Centre for Immunology and Infection. Department of Biology. Heslington, York, United Kingdom / National Institute of Parasitic Diseases. Chinese Center for Disease Control and Prevention. Shanghai, People’s Republic of China
University of York. Genomics and Bioinformatics Laboratory. Department of Biology. Heslington, York, United Kingdom
Universidade Federal de Ouro Preto. Campus Morro do Cruzeiro. Departamento de Ciências Biológicas. Ouro Preto, MG, Brasil
Instituto Butantan. Centro Biotecnologia. São Paulo, SP, Brasil
Instituto Butantan. Centro Biotecnologia. São Paulo, SP, Brasil
Instituto Butantan. Centro Biotecnologia. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil
University of York. Genomics and Bioinformatics Laboratory. Department of Biology. Heslington, York, United Kingdom
University of York. Genomics and Bioinformatics Laboratory. Department of Biology. Heslington, York, United Kingdom
Universidade de São Paulo. Instituto de Física de São Carlos. São Carlos, SP, Brasil
Universidade Federal de Ouro Preto. Campus Morro do Cruzeiro. Departamento de Ciências Biológicas. Ouro Preto, MG, Brasil
Abstract: BACKGROUND: The schistosome esophagus is divided into anterior and posterior compartments, each surrounded by a dense cluster of gland cell bodies, the source of distinct secretory vesicles discharged into the lumen to initiate the processing of ingested blood. Erythrocytes are lysed in the lumen, leucocytes are tethered and killed and platelets are eliminated. We know little about the proteins secreted from the two glands that mediate these biological processes. METHODOLOGY/PRINCIPAL FINDINGS: We have used subtractive RNA-Seq to characterise the complement of genes that are differentially expressed in a head preparation, compared to matched tissues from worm tails. The expression site of representative highlighted genes was then validated using whole munt in situ hybridisation (WISH). Mapping of transcript reads to the S. mansoni genome assembly using Cufflinks identified ~90 genes that were differentially expressed >fourfold in the head preparation; ~50 novel transcripts were also identified by de novo assembly using Trinity. The largest subset (27) of secreted proteins was encoded by microexon genes (MEGs), the most intense focus identified to date. Expression of three (MEGs 12, 16, 17) was confirmed in the anterior gland and five (MEGs 8.1, 9, 11, 15 and 22) in the posterior gland. The other major subset comprised nine lysosomal hydrolases (aspartyl proteases, phospholipases and palmitoyl thioesterase), again localised to the glands. CONCLUSIONS: A proportion of the MEG-encoded secretory proteins can be classified by their primary structure. We have suggested testable hypotheses about how they might function, in conjunction with the lysosomal hydrolases, to mediate the biological processes that occur in the esophagus lumen. Antibodies bind to the esophageal secretions in both permissive and self-curing hosts, suggesting that the proteins represent a novel panel of untested vaccine candidates. A second major task is to identify which of them can serve as immune targets.
DeCS: Perfilação da Expressão Gênica
Proteínas de Helminto/biossíntese
Hidrolases/biossíntese
Schistosoma/enzimologia
Animais
Esôfago/enzimologia
Feminino
Proteínas de Helminto/genética
Hidrolases/genética
Hibridização In Situ
Masculino
Camundongos Endogâmicos BALB C
Issue Date: 2015
Publisher: Public Library of Science
Citation: WILSON, R. A. et al. The Schistosome Esophagus Is a 'Hotspot' for Microexon and Lysosomal Hydrolase Gene Expression: Implications for Blood Processing. PLoS Neglected Tropical Diseases, v. 9, n. 12, p. e0004272, 2015.
DOI: 10.1371/journal.pntd.0004272
ISSN: 1935-2735
Copyright: open access
Appears in Collections:BA - IGM - Artigos de Periódicos

Files in This Item:
File Description SizeFormat 
Wilson RA The schistosome ....pdf7.26 MBAdobe PDFView/Open



FacebookTwitterDeliciousLinkedInGoogle BookmarksBibTex Format mendeley Endnote DiggMySpace

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.