Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/18759
Type
ArticleCopyright
Restricted access
Embargo date
2030-01-01
Collections
- IOC - Artigos de Periódicos [12820]
Metadata
Show full item record
THE INTERACTION OF THE ANTITOXIN DM43 WITH A SNAKE VENOM METALLOPROTEINASE ANALYZED BY MASS SPECTROMETRY AND SURFACE PLASMON RESONANCE
Espectrometria de Massas
Toxina
Antitoxina
Espectometria de massa
Inibidor de metaloproteinase
Veneno de cobra
metalloproteinase inhibitor
snake venom
toxin
antitoxin
mass spectrometry
surface plasmon resonance
Author
Affilliation
Embrapa-Recursos Genéticos e Biotecnologia. Estação Parque Biológico. Laboratório de Espectometria de Massa. Brasília, DF, Brasil.
Diabetes Protein Engineering. Novo Nordisk A/S. Mälov, Denmark.
University of Southern Denmark. Department of Biochemistry and Molecular Biology. Odense M, Denmark.
Embrapa-Recursos Genéticos e Biotecnologia. Estação Parque Biológico. Laboratório de Espectometria de Massa. Brasília, DF, Brasil.
Laboratory of Organic Chemistry, Zürich, Switzerland.
University of Oxford. Department of Chemistry. Physical and Theoretical Chemistry Laboratory. Oxford, United Kingdom.
Instituto Butantan. Laboratório de Imunopatologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Imunopatologia. São Paulo, SP, Brasil.
University of Southern Denmark. Department of Biochemistry and Molecular Biology. Odense M, Denmark.
Universidade Federal do Rio de Janeiro. Centro de Tecnologia. Instituto de Química. Laboratório de Química de Proteínas. Unidade de Proteômica. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologial. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network / FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologial. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network / FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologial. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network / FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Diabetes Protein Engineering. Novo Nordisk A/S. Mälov, Denmark.
University of Southern Denmark. Department of Biochemistry and Molecular Biology. Odense M, Denmark.
Embrapa-Recursos Genéticos e Biotecnologia. Estação Parque Biológico. Laboratório de Espectometria de Massa. Brasília, DF, Brasil.
Laboratory of Organic Chemistry, Zürich, Switzerland.
University of Oxford. Department of Chemistry. Physical and Theoretical Chemistry Laboratory. Oxford, United Kingdom.
Instituto Butantan. Laboratório de Imunopatologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Imunopatologia. São Paulo, SP, Brasil.
University of Southern Denmark. Department of Biochemistry and Molecular Biology. Odense M, Denmark.
Universidade Federal do Rio de Janeiro. Centro de Tecnologia. Instituto de Química. Laboratório de Química de Proteínas. Unidade de Proteômica. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologial. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network / FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologial. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network / FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologial. Rio de Janeiro, RJ, Brasil / Rio de Janeiro Proteomic Network / FAPERJ. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Toxinas/CNPq. Brasil.
Abstract
DM43 is a circulating dimeric antitoxin isolated from Didelphis aurita, a South American marsupial naturally immune to snake envenomation. This endogenous inhibitor binds non-covalently to jararhagin, the main hemorrhagic metalloproteinase from Bothrops jararaca snake venom, and efficiently neutralizes its toxicity. The aim of this study was to apply mass spectrometry (MS) and surface plasmon resonance (SPR) to improve the molecular characterization of this heterocomplex. The stoichiometry of the interaction was confirmed by nanoelectrospray ionization-quadrupole-time-of-flight MS; from native solution conditions, the complex showed a molecular mass of ~94 kDa, indicating that one molecule of jararhagin (50 kDa) interacts with one monomer of DM43 (43 kDa). Although readily observed in solution, the dimeric structure of the inhibitor was barely preserved in the gas phase. This result suggests that, in contrast to the toxin-antitoxin complex, hydrophobic interactions are the primary driving force for the inhibitor dimerization. For the real-time interaction analysis, the toxin was captured on a sensor chip derivatized with the anti-jararhagin monoclonal antibody MAJar 2. The sensorgrams obtained after successive injections of DM43 in a concentration series were globally fitted to a simple bimolecular interaction, yielding the following kinetic rates for the DM43/jararhagin interaction: k(a) = 3.54 ± 0.03 × 10(4) M(-1) s(-1) and k(d) = 1.16 ± 0.07 × 10(-5) s(-1), resulting in an equilibrium dissociation constant (K(D) ) of 0.33 ± 0.06 nM. Taken together, MS and SPR results show that DM43 binds to its target toxin with high affinity and constitute the first accurate quantitative study on the extent of the interaction between a natural inhibitor and a metalloproteinase toxin, with unequivocal implications for the use of this kind of molecule as template for the rational development of novel antivenom therapies.
Keywords in Portuguese
MetaloproteinaseEspectrometria de Massas
Toxina
Antitoxina
Espectometria de massa
Inibidor de metaloproteinase
Veneno de cobra
Keywords
metaloproteinasemetalloproteinase inhibitor
snake venom
toxin
antitoxin
mass spectrometry
surface plasmon resonance
Share