Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/24815
Type
ArticleCopyright
Open access
Collections
- IOC - Artigos de Periódicos [12820]
Metadata
Show full item record
FUNCTIONAL ANALOGY IN HUMANMETABOLISM: ENZYMES WITH DIFFERENT BIOLOGICAL ROLES OR FUNCTIONAL REDUNDANCY?
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Computacional e Sistemas. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Computacional e Sistemas. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ. Brasil.
Abstract
Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why somany events of independent origin have apparently occurred during
evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, evenwith substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome.Our hypothesis is that the coexistence of multiple enzymatic forms might not
be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles.
Share