Please use this identifier to cite or link to this item:
Title: The Genomic Architecture of Novel Simulium damnosum Wolbachia Prophage Sequence Elements and Implications for Onchocerciasis Epidemiology
Authors: Crainey, James L.
Hurst, Jacob
Lamberton, Poppy H. L.
Cheke, Robert A.
Griffin, Claire E.
Wilson, Michael D.
Araújo, Cláudia P. Mendes de
Basáñez, María-Gloria
Post, Rory J.
Affilliation: Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brasil.
University of Oxford. Oxford Martin School, Institute for Emerging Infections. Oxford, UK.
University of Glasgow. Institute of Biodiversity, Animal Health and Comparative Medicine, Wellcome Centre for Molecular Parasitology. Gasglow, UK.
University of Greenwich at Medway. Natural Resources Institute. Chartam, UK.
Imperial College London. Department of Infectious Disease Epidemiology, Faculty of Medicine (St Mary's campus), London Centre for Neglected Tropical Disease Research, School of Public Health. London, UK.
Natural History Museum. Core Research Laboratories Department, Molecular Biology Laboratories Division. London, UK.
University of Ghana. Noguchi Memorial Institute for Medical Research. Accra, Ghana.
Liverpool John Moores University. School of Natural Sciences and Psychology. Liverpool, UK.
London School of Hygiene and Tropical Medicine. Department of Disease Control, Faculty of Infectious Tropical Diseases. London, UK.
Abstract: Research interest in Wolbachia is growing as new discoveries and technical advancements reveal the public health importance of both naturally occurring and artificial infections. Improved understanding of the Wolbachia bacteriophages (WOs) WOcauB2 and WOcauB3 [belonging to a sub-group of four WOs encoding serine recombinases group 1 (sr1WOs)], has enhanced the prospect of novel tools for the genetic manipulation of Wolbachia. The basic biology of sr1WOs, including host range and mode of genomic integration is, however, still poorly understood. Very few sr1WOs have been described, with two such elements putatively resulting from integrations at the same Wolbachia genome loci, about 2 kb downstream from the FtsZ cell-division gene. Here, we characterize the DNA sequence flanking the FtsZ gene of wDam, a genetically distinct line of Wolbachia isolated from the West African onchocerciasis vector Simulium squamosum E. Using Roche 454 shot-gun and Sanger sequencing, we have resolved >32 kb of WO prophage sequence into three contigs representing three distinct prophage elements. Spanning ≥36 distinct WO open reading frame gene sequences, these prophage elements correspond roughly to three different WO modules: a serine recombinase and replication module (sr1RRM), a head and base-plate module and a tail module. The sr1RRM module contains replication genes and a Holliday junction recombinase and is unique to the sr1 group WOs. In the extreme terminal of the tail module there is a SpvB protein homolog—believed to have insecticidal properties and proposed to have a role in how Wolbachia parasitize their insect hosts. We propose that these wDam prophage modules all derive from a single WO genome, which we have named here sr1WOdamA1. The best-match database sequence for all of our sr1WOdamA1-predicted gene sequences was annotated as of Wolbachia or Wolbachia phage sourced from an arthropod. Clear evidence of exchange between sr1WOdamA1 and other Wolbachia WO phage sequences was also detected. These findings provide insights into how Wolbachia could affect a medically important vector of onchocerciasis, with potential implications for future control methods, as well as supporting the hypothesis that Wolbachia phages do not follow the standard model of phage evolution.
Keywords: Wolbachia
Wolbachia phages
keywords: Wolbachia
Fagos de Wolbachia
Issue Date: 2017
Publisher: Frontiers Research Foundation
Citation: CRAINEY, James Lee et al. The Genomic Architecture of Novel Simulium damnosum Wolbachia Prophage Sequence Elements and Implications for Onchocerciasis Epidemiology. Journal Frontiers in Microbiology, Lausanne, v. 8, p. 1-17, May 2017.
Description: We are grateful for the support provided in Ghana by Daniel A. Boakye, Mike Y. Osei-Atweneboana, and Anthony Tetteh-Kumah for the collection of the simuliid larval samples. We are also grateful to the Natural History Museum's DNA sequencing facility, and especially to Julia Llewellyn-Hughes and Lisa Smith, for assisting with the Sanger sequencing used in this study.
Copyright: open access
Appears in Collections:AM - ILMD - Artigos de Periódicos

Files in This Item:
File Description SizeFormat 
Crainey_James_etal_ILMD_2017.pdfArticle Genomica Architecture848.32 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksBibTex Format mendeley Endnote DiggMySpace

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.