Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/31570
Type
ArticleCopyright
Open access
Collections
- ENSP - Artigos de Periódicos [2412]
- INI - Artigos de Periódicos [3646]
Metadata
Show full item record
DOES MY PATIENT HAVE CHRONIC CHAGAS DISEASE? DEVELOPMENT AND TEMPORAL VALIDATION OF A DIAGNOSTIC RISK SCORE
Signs and symptoms
Diagnosis
Sensitivity and specificity
Sensitivity and specificity
Nomograms
Author
Affilliation
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Departamento de Epidemiologia e Métodos Quantitativos em Saúde. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em doença de Chagas. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Departamento de Epidemiologia e Métodos Quantitativos em Saúde. Rio de Janeiro, RJ, Brasil.
Abstract
Introduction: With the globalization of Chagas disease, unexperienced health care providers may have difficulties in identifying which patients should be examined for this condition. This study aimed to develop and validate a diagnostic clinical prediction model for chronic Chagas disease. Methods: This diagnostic cohort study included consecutive volunteers suspected to have chronic Chagas disease. The clinical information was blindly compared to serological tests results, and a logistic regression model was fit and validated. Results: The development cohort included 602 patients, and the validation cohort included 138 patients. The Chagas disease prevalence was 19.9%. Sex, age, referral from blood bank, history of living in a rural area, recognizing the kissing bug, systemic hypertension, number of siblings with Chagas disease, number of relatives with a history of stroke, ECG with low voltage, anterosuperior divisional block, pathologic Q wave, right bundle branch block, and any kind of extrasystole were included in the final model. Calibration and discrimination in the development and validation cohorts (ROC AUC 0.904 and 0.912, respectively) were good. Sensitivity and specificity analyses showed that specificity reaches at least 95% above the predicted 43% risk, while sensitivity is at least 95% below the predicted 7% risk. Net benefit decision curves favor the model across all thresholds. Conclusions: A nomogram and an online calculator (available at http://shiny.ipec.fiocruz.br:3838/pedrobrasil/chronic_chagas_disease_prediction/) were developed to aid in individual risk estimation.
Keywords
Chagas diseaseSigns and symptoms
Diagnosis
Sensitivity and specificity
Sensitivity and specificity
Nomograms
Share