Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/31993
Type
ArticleCopyright
Open access
Collections
Metadata
Show full item record67
CITATIONS
67
Total citations
17
Recent citations
5.18
Field Citation Ratio
1.93
Relative Citation Ratio
ROLE OF THE APT1 PROTEIN IN POLYSACCHARIDE SECRETION BY CRYPTOCOCCUS NEOFORMANS
Author
Affilliation
Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
The University of British Columbia. Faculty of Land and Food Systems. Department of Microbiology and Immunology. Michael Smith Laboratories. Vancouver, Canada.
Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
The University of British Columbia. Faculty of Land and Food Systems. Department of Microbiology and Immunology. Michael Smith Laboratories. Vancouver, Canada.
The University of Texas at El Paso. Department of Biological Sciences. Border Biomedical Research Center. El Paso, Texas, USA.
Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
The University of Texas at El Paso. Department of Biological Sciences. Border Biomedical Research Center. El Paso, Texas, USA.
Universidade Federal do Rio de Janeiro. Instituto de Biofísica Carlos Chagas Filho. Laboratório de Ultraestrutura Celular Hertha Meyer. Rio de Janeiro, RJ, Brazil
The University of British Columbia. Faculty of Land and Food Systems. Department of Microbiology and Immunology. Michael Smith Laboratories. Vancouver, Canada.
Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
The University of British Columbia. Faculty of Land and Food Systems. Department of Microbiology and Immunology. Michael Smith Laboratories. Vancouver, Canada.
Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
The University of British Columbia. Faculty of Land and Food Systems. Department of Microbiology and Immunology. Michael Smith Laboratories. Vancouver, Canada.
The University of Texas at El Paso. Department of Biological Sciences. Border Biomedical Research Center. El Paso, Texas, USA.
Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
The University of Texas at El Paso. Department of Biological Sciences. Border Biomedical Research Center. El Paso, Texas, USA.
Universidade Federal do Rio de Janeiro. Instituto de Biofísica Carlos Chagas Filho. Laboratório de Ultraestrutura Celular Hertha Meyer. Rio de Janeiro, RJ, Brazil
The University of British Columbia. Faculty of Land and Food Systems. Department of Microbiology and Immunology. Michael Smith Laboratories. Vancouver, Canada.
Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Rio de Janeiro, RJ, Brasil.
Abstract
Flippases are key regulators of membrane asymmetry and secretory mechanisms. Vesicular polysaccharide secretion is essential for the pathogenic mechanisms of Cryptococcus neoformans. On the basis of the observations that flippases are required for polysaccharide secretion in plants and the putative Apt1 flippase is required for cryptococcal virulence, we analyzed the role of this enzyme in polysaccharide release by C. neoformans, using a previously characterized apt1Δ mutant. Mutant and wild-type (WT) cells shared important phenotypic characteristics, including capsule morphology and dimensions, glucuronoxylomannan (GXM) composition, molecular size, and serological properties. The apt1Δ mutant, however, produced extracellular vesicles (EVs) with a lower GXM content and different size distribution in comparison with those of WT cells. Our data also suggested a defective intracellular GXM synthesis in mutant cells, in addition to changes in the architecture of the Golgi apparatus. These findings were correlated with diminished GXM production during in vitro growth, macrophage infection, and lung colonization. This phenotype was associated with decreased survival of the mutant in the lungs of infected mice, reduced induction of interleukin-6 (IL-6) cytokine levels, and inefficacy in colonization of the brain. Taken together, our results indicate that the lack of APT1 caused defects in both GXM synthesis and vesicular export to the extracellular milieu by C. neoformans via processes that are apparently related to the pathogenic mechanisms used by this fungus during animal infection.
Share