Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/32106
Type
ArticleCopyright
Restricted access
Embargo date
2026-12-31
Collections
- INI - Artigos de Periódicos [3649]
Metadata
Show full item record
SHORT-TERM RESPONSES OF SOYBEAN ROOTS TO INDIVIDUAL AND COMBINATORIAL EFFECTS OF ELEVATED [CO2] AND WATER DEFICIT
Author
Affilliation
Universidade Federal do Rio de Janeiro. Departamento de Genética. Instituto de Biologia. Rio de Janeiro, RJ, Brasil.
Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. São Paulo, SP, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Genética. Instituto de Biologia. Rio de Janeiro, RJ, Brasil.
Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. São Paulo, SP, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Genética. Instituto de Biologia. Rio de Janeiro, RJ, Brasil.
Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. São Paulo, SP, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Genética. Instituto de Biologia. Rio de Janeiro, RJ, Brasil.
Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. São Paulo, SP, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Genética. Instituto de Biologia. Rio de Janeiro, RJ, Brasil.
Abstract
Climate change increasingly threatens plant growth and productivity. Soybean (Glycine max) is one of the most important crops in the world. Although its responses to increased atmospheric carbon dioxide concentration ([CO2]) have been previously studied, root molecular responses to elevated [CO2] (E[CO2]) or the combination/interaction of E[CO2] and water deficit remain unexamined. In this study, we evaluated the individual and combinatory effects of E[CO2] and water deficit on the physiology and root molecular responses in soybean. Plants growing under E[CO2] exhibited increased photosynthesis that resulted in a higher biomass, plant height, and leaf area. E[CO2] decreased the transcripts levels of genes involved in iron uptake and transport, antioxidant activity, secondary metabolism and defense, and stress responses in roots. When plants grown under E[CO2] are treated with instantaneous water deficit, E[CO2] reverted the expression of water deficit-induced genes related to stress, defense, transport and nutrient deficiency. Furthermore, the interaction of both treatments uniquely affected the expression of genes. Both physiological and transcriptomic analyses demonstrated that E[CO2] may mitigate the negative effects of water deficit on the soybean roots. In addition, the identification of genes that are modulated by the interaction of E[CO2] and water deficit suggests an emergent response that is triggered only under this specific condition.
Share