Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/50842
Type
ArticleCopyright
Open access
Collections
- IOC - Artigos de Periódicos [12967]
Metadata
Show full item record
A SYSTEMATIC STRATEGY TO FIND POTENTIAL THERAPEUTIC TARGETS FOR PSEUDOMONAS AERUGINOSA USING INTEGRATED COMPUTATIONAL MODELS
Rede metabólica
Dados de transcrição
Modelo integrado
Alvo terapêutico
Metabolic network
Transcriptome data
Integrated model
Therapeutic target
Author
Affilliation
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Laboratório Nacional de Computação Científica. Petrópolis, RJ, Brasil.
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Universidade Federal Fluminense. Instituto de Física. Niterói, RJ, Brasil.
Laboratório Nacional de Computação Científica. Petrópolis, RJ, Brasil.
Laboratório Nacional de Computação Científica. Petrópolis, RJ, Brasil.
Fundação Oswaldo Cruz. Insituto Oswaldo Cruz. Laboratório de Pesquisa em Infecção Hospitalar. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Pós-Graduação em Biologia Parasitária. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Laboratório Nacional de Computação Científica. Petrópolis, RJ, Brasil.
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Universidade Federal Fluminense. Instituto de Física. Niterói, RJ, Brasil.
Laboratório Nacional de Computação Científica. Petrópolis, RJ, Brasil.
Laboratório Nacional de Computação Científica. Petrópolis, RJ, Brasil.
Fundação Oswaldo Cruz. Insituto Oswaldo Cruz. Laboratório de Pesquisa em Infecção Hospitalar. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Pós-Graduação em Biologia Parasitária. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has been a constant
global health problem due to its ability to cause infection at different body sites and its
resistance to a broad spectrum of clinically available antibiotics. The World Health
Organization classified multidrug-resistant Pseudomonas aeruginosa among the topranked
organisms that require urgent research and development of effective
therapeutic options. Several approaches have been taken to achieve these goals, but
they all depend on discovering potential drug targets. The large amount of data obtained
from sequencing technologies has been used to create computational models of
organisms, which provide a powerful tool for better understanding their biological
behavior. In the present work, we applied a method to integrate transcriptome data
with genome-scale metabolic networks of Pseudomonas aeruginosa. We submitted both
metabolic and integrated models to dynamic simulations and compared their performance
with published in vitro growth curves. In addition, we used these models to identify
potential therapeutic targets and compared the results to analyze the assumption that
computational models enriched with biological measurements can provide more selective
and (or) specific predictions. Our results demonstrate that dynamic simulations from
integrated models result in more accurate growth curves and flux distribution more
coherent with biological observations. Moreover, identifying drug targets from
integrated models is more selective as the predicted genes were a subset of those
found in the metabolic models. Our analysis resulted in the identification of 26 non-host
homologous targets. Among them, we highlighted five top-ranked genes based on lesser
conservation with the human microbiome. Overall, some of the genes identified in this work have already been proposed by different approaches and (or) are already investigated as
targets to antimicrobial compounds, reinforcing the benefit of using integrated models as a
starting point to selecting biologically relevant therapeutic targets.
Keywords in Portuguese
Pseudomonas aeruginosaRede metabólica
Dados de transcrição
Modelo integrado
Alvo terapêutico
Keywords
Pseudomonas aeruginosaMetabolic network
Transcriptome data
Integrated model
Therapeutic target
Share