Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/52592
Type
ArticleCopyright
Open access
Collections
- IOC - Artigos de Periódicos [12973]
Metadata
Show full item record
MOLECULAR ARCHITECTURE OF THE ANTIOPHIDIC PROTEIN DM64 AND ITS BINDING SPECIFICITY TO MYOTOXIN II FROM BOTHROPS ASPER VENOM
Espectrometria de massa
Dobra de imunoglobulina
Biologia estrutural
Neutralização de toxinas
Inibidor de proteína
Envenenamento por cobra
Atividade antiofídica
Mass spectrometry
Immunoglobulin fold
Structural biology
Toxin neutralisation
Protein inhibitor
Snake envenomation
Antiophidic activity
Author
Soares, Barbara S.
Rocha, Surza Lucia G.
Bastos, Viviane A.
Lima, Diogo B.
Carvalho, Paulo C.
Gozzo, Fabio C.
Dermeler, Borries
Williams, Tayler L.
Arnold, Janelle
Henrickson, Amy
Jørgensen, Thomas J. D.
Souza, Tatiana A. C. B.
Perales, Jonas
Valente, Richard H.
Lomonte, Bruno
Gomes Neto, Francisco
Ferreira, Ana Gisele C. Neves
Rocha, Surza Lucia G.
Bastos, Viviane A.
Lima, Diogo B.
Carvalho, Paulo C.
Gozzo, Fabio C.
Dermeler, Borries
Williams, Tayler L.
Arnold, Janelle
Henrickson, Amy
Jørgensen, Thomas J. D.
Souza, Tatiana A. C. B.
Perales, Jonas
Valente, Richard H.
Lomonte, Bruno
Gomes Neto, Francisco
Ferreira, Ana Gisele C. Neves
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Department of Chemical Biology, Leibniz Forschungsinstitut fu€r Molekulare Pharmakologie (FMP). Berlin, Germany.
Instituto Carlos Chagas. Laboratório de Estrutural e Computacional Proteômica. Curitiba, PR, Brasil.
Universidade de Campinas. Laboratório de Espectrometria de Massa Dalton. Campinas, SP, Brasil.
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA / Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada / Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Department of Environmental Science, Princeton University, Princeton, NJ, USA.
Department of Chemistry and Biochemistry. University of Lethbridge. Lethbridge, AB, Canada.
Department of Biochemistry and Molecular Biology. University of Southern Denmark. Odense, Denmark.
Instituto Carlos Chagas. Laboratório de Estrutural e Computacional Proteômica. Curitiba, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Clodomiro Picado Institute, University of Costa Rica. San José, Costa Rica.soares
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Department of Chemical Biology, Leibniz Forschungsinstitut fu€r Molekulare Pharmakologie (FMP). Berlin, Germany.
Instituto Carlos Chagas. Laboratório de Estrutural e Computacional Proteômica. Curitiba, PR, Brasil.
Universidade de Campinas. Laboratório de Espectrometria de Massa Dalton. Campinas, SP, Brasil.
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA / Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada / Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.
Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Department of Environmental Science, Princeton University, Princeton, NJ, USA.
Department of Chemistry and Biochemistry. University of Lethbridge. Lethbridge, AB, Canada.
Department of Biochemistry and Molecular Biology. University of Southern Denmark. Odense, Denmark.
Instituto Carlos Chagas. Laboratório de Estrutural e Computacional Proteômica. Curitiba, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Clodomiro Picado Institute, University of Costa Rica. San José, Costa Rica.soares
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Abstract
DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an
ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa
antitoxin targets myotoxic phospholipases A2, which account for most local tissue
damage of viperid snakebites. We investigated the noncovalent complex formed
between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from
Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion
chromatography indicated that DM64 is monomeric in solution and binds equimolar
amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were
unsuccessful. Obtaining recombinant protein to pursue structural studies was also
challenging. Classical molecular modeling techniques were impaired by the lack of
templates with more than 25% sequence identity with DM64. An integrative structural
biology approach was then applied to generate a three-dimensional model of the
inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulinlike
domains of DM64. Distance constraints generated by cross-linking mass
spectrometry of the complex guided the docking of DM64 domains to the crystal
structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS),
molecular modeling, and molecular dynamics simulations indicated that the DM64-
myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Interprotein
cross-links and limited hydrolysis analyses shed light on the inhibitor’s regions
involved with toxin interaction, revealing the critical participation of the first, third, and
fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to
myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts
in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the
quaternary structure of the toxin. The first domain of DM64 interacts with the functional
site of the toxin putatively associated with membrane anchorage. We propose that both
mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present
topological characterization of this toxin-antitoxin complex constitutes an essential
step toward the rational design of novel peptide-based antivenom therapies targeting
snake venom myotoxins.
Keywords in Portuguese
Reticulação (XL)Espectrometria de massa
Dobra de imunoglobulina
Biologia estrutural
Neutralização de toxinas
Inibidor de proteína
Envenenamento por cobra
Atividade antiofídica
Keywords
Cross-linking (XL)Mass spectrometry
Immunoglobulin fold
Structural biology
Toxin neutralisation
Protein inhibitor
Snake envenomation
Antiophidic activity
Share