Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/56838
Type
ArticleCopyright
Open access
Sustainable Development Goals
04 Educação de qualidadeCollections
Metadata
Show full item record
UNCERTAINTY-AWARE MEMBRANOUS NEPHROPATHY CLASSIFICATION: A MONTE-CARLO DROPOUT APPROACH TO DETECT HOW CERTAIN IS THE MODEL
Author
Affilliation
Universidade Federal Da Bahia. IvisionLab. Salvador, BA, Brasil.
Universidade Federal Da Bahia. IvisionLab. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Salvador, BA, Brasil.
Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.
Universidade Federal Da Bahia. IvisionLab. Salvador, BA, Brasil.
Universidade Federal Da Bahia. IvisionLab. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Salvador, BA, Brasil.
Universidade Estadual de Feira de Santana. Departamento de Tecnologia. Salvador, BA, Brasil.
Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.
Universidade Federal Da Bahia. IvisionLab. Salvador, BA, Brasil.
Abstract
Membranous nephropathy (MN) is among the most common glomerular diseases that cause nephrotic syndrome in adults. To aid pathologists on performing the MN classification task, we proposed here a pipeline consisted of two steps. Firstly, we assessed four deep-learning-based architectures, namely, ResNet-18, MobileNet, DenseNet, and Wide-ResNet. To achieve more reliable predictions, we adopted and extensively evaluated a Monte-Carlo dropout approach for uncertainty estimation. Using a 10-fold cross-validation setup, all models achieved average F1-scores above 92%, where the highest average value of 93.2% was obtained by using Wide-ResNet. Regarding uncertainty estimation with Wide-ResNet, high uncertainty scores were more associated with erroneous predictions, demonstrating that our approach can assist pathologists in interpreting the predictions with high reliability. We show that uncertainty-based thresholds for decision referral can greatly improve classification performance, increas-ing the accuracy up to 96%. Finally, we investigated how the uncertainty scores relate to complexity scores defined by pathologists
Share