Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/59791
THE COMPLETE GENOME SEQUENCE OF CORYNEBACTERIUM PSEUDOTUBERCULOSIS FRC41 ISOLATED FROM A 12-YEAR-OLD GIRL WITH NECROTIZING LYMPHADENITIS REVEALS INSIGHTS INTO GENE-REGULATORY NETWORKS CONTRIBUTING TO VIRULENCE
Author
Trost, Eva
Ott, Lisa
Schneider, Jessica
Schröder, Jasmin
Jaenicke, Sebastian
Goesmann, Alexander
Husemann, Peter
Stoye, Jens
Dorella, Fernanda Alves
Rocha, Flavia Souza
Soares, Siomar de Castro
D'Afonseca, Vívian
Miyoshi, Anderson
Ruiz, Jeronimo Conceição
Silva, Artur
Azevedo, Vasco
Burkovski, Andreas
Guiso, Nicole
Join-Lambert, Olivier F
Kayal, Samer
Tauch, Andreas
Ott, Lisa
Schneider, Jessica
Schröder, Jasmin
Jaenicke, Sebastian
Goesmann, Alexander
Husemann, Peter
Stoye, Jens
Dorella, Fernanda Alves
Rocha, Flavia Souza
Soares, Siomar de Castro
D'Afonseca, Vívian
Miyoshi, Anderson
Ruiz, Jeronimo Conceição
Silva, Artur
Azevedo, Vasco
Burkovski, Andreas
Guiso, Nicole
Join-Lambert, Olivier F
Kayal, Samer
Tauch, Andreas
Affilliation
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany/CLIB Graduate Cluster Industrial Biotechnology. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Lehrstuhl für Mikrobiologie. Friedrich-Alexander-Universität Erlangen-Nürnberg. Erlangen, Germany
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany/CLIB Graduate Cluster Industrial Biotechnology. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany/Bioinformatics Resource Facility. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Bioinformatics Resource Facility. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Bioinformatics Resource Facility. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
AG Genominformatik. Technische Fakultät. Universität Bielefeld. Germany
AG Genominformatik. Technische Fakultät. Universität Bielefeld. Germany
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Cellular and Molecular Parasitology Laboratory. Rene Rachou Research Center. Oswaldo Cruz Foundation. Belo Horizonte, MG, Brazil
Universidade Federal do Pará. Instituto de Ciências Biológicas. Belém, PA, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Lehrstuhl für Mikrobiologie. Friedrich-Alexander-Universität Erlangen-Nürnberg. Erlangen, Germany
Institut Pasteur. Unité de Prévention et Thérapies Moléculaires des Maladies Humaines. National Centre of Reference of Toxigenic Corynebacteria. Paris Cedex 15, France
Medical Faculty. University Paris Descartes. Hospital Necker Enfants Malades. Department of Microbiology. Paris, France
Medical Faculty. University Rennes 1. Hospital Pontchaillou. Department of Microbiology. Rennes, France
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Lehrstuhl für Mikrobiologie. Friedrich-Alexander-Universität Erlangen-Nürnberg. Erlangen, Germany
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany/CLIB Graduate Cluster Industrial Biotechnology. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany/Bioinformatics Resource Facility. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Bioinformatics Resource Facility. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Bioinformatics Resource Facility. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
AG Genominformatik. Technische Fakultät. Universität Bielefeld. Germany
AG Genominformatik. Technische Fakultät. Universität Bielefeld. Germany
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Cellular and Molecular Parasitology Laboratory. Rene Rachou Research Center. Oswaldo Cruz Foundation. Belo Horizonte, MG, Brazil
Universidade Federal do Pará. Instituto de Ciências Biológicas. Belém, PA, Brazil
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brazil
Lehrstuhl für Mikrobiologie. Friedrich-Alexander-Universität Erlangen-Nürnberg. Erlangen, Germany
Institut Pasteur. Unité de Prévention et Thérapies Moléculaires des Maladies Humaines. National Centre of Reference of Toxigenic Corynebacteria. Paris Cedex 15, France
Medical Faculty. University Paris Descartes. Hospital Necker Enfants Malades. Department of Microbiology. Paris, France
Medical Faculty. University Rennes 1. Hospital Pontchaillou. Department of Microbiology. Rennes, France
Institut für Genomforschung und Systembiologie. Centrum für Biotechnologie. Universität Bielefeld. Bielefeld, Germany
Abstract
Background: Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. Results: Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. Conclusion: The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host
Share