Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/60774
Type
ArticleCopyright
Open access
Sustainable Development Goals
03 Saúde e Bem-EstarCollections
Metadata
Show full item record
SYNDROMIC SURVEILLANCE USING STRUCTURED TELEHEALTH DATA: CASE STUDY OF THE FIRST WAVE OF COVID-19 IN BRAZIL
Telemedicina
Vigilância de doenças
COVID 19
Monitoramento Vigilância
Modelagem computacional
Transmissão
Doenças infecciosas
Sindrômico
Telemedicine
Disease surveillance
COVID-19
Monitoring
Surveillance
Computational modeling
Transmission
Infectious diseases
Syndromic
Controle de Vetores de Doenças
COVID 19
Simulação por Computador
Doenças Transmissíveis
Author
Affilliation
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Doenças Infecciosas Transmitidas por Vetores. Salvador, BA, Brasil / Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Engenharia Civil. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / Universidade Federal Fluminense. Departamento de Engenharia Civil. Niterói, RJ, Brasil.
Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil /Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimento para Saúde. Salvador, BA, Brasil.
Universidade Estadual de Santa Cruz. Departamento de Ciências da Saúde. Salvador, BA, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Engenharia Civil. Rio de Janeiro, RJ, Brasil.
Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil /Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Engenharia Civil. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / Universidade Federal Fluminense. Departamento de Engenharia Civil. Niterói, RJ, Brasil.
Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil /Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimento para Saúde. Salvador, BA, Brasil.
Universidade Estadual de Santa Cruz. Departamento de Ciências da Saúde. Salvador, BA, Brasil.
Universidade Federal do Rio de Janeiro. Departamento de Engenharia Civil. Rio de Janeiro, RJ, Brasil.
Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil /Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.
Abstract
Background: Telehealth has been widely used for new case detection and telemonitoring during the COVID-19 pandemic. It safely provides access to health care services and expands assistance to remote, rural areas and underserved communities in situations of shortage of specialized health professionals. Qualified data are systematically collected by health care workers containing information on suspected cases and can be used as a proxy of disease spread for surveillance purposes. However, the use of this approach for syndromic surveillance has yet to be explored. Besides, the mathematical modeling of epidemics is a well-established field that has been successfully used for tracking the spread of SARS-CoV-2 infection, supporting the decision-making process on diverse aspects of public health response to the COVID-19 pandemic. The response of the current models depends on the quality of input data, particularly the transmission rate, initial conditions, and other parameters present in compartmental models. Telehealth systems may feed numerical models developed to model virus spread in a specific region. Objective: Herein, we evaluated whether a high-quality data set obtained from a state-based telehealth service could be used to forecast the geographical spread of new cases of COVID-19 and to feed computational models of disease spread. Methods: We analyzed structured data obtained from a statewide toll-free telehealth service during 4 months following the first notification of COVID-19 in the Bahia state, Brazil. Structured data were collected during teletriage by a health team of medical
students supervised by physicians. Data were registered in a responsive web application for planning and surveillance purposes. The data set was designed to quickly identify users, city, residence neighborhood, date, sex, age, and COVID-19–like symptoms. We performed a temporal-spatial comparison of calls reporting COVID-19–like symptoms and notification of COVID-19 cases. The number of calls was used as a proxy of exposed individuals to feed a mathematical model called “susceptible, exposed, infected, recovered, deceased.” Results: For 181 (43%) out of 417 municipalities of Bahia, the first call to the telehealth service reporting COVID-19–like symptoms preceded the first notification of the disease. The calls preceded, on average, 30 days of the notification of COVID-19 in the municipalities of the state of Bahia, Brazil. Additionally, data obtained by the telehealth service were used to effectively
reproduce the spread of COVID-19 in Salvador, the capital of the state, using the “susceptible, exposed, infected, recovered, deceased” model to simulate the spatiotemporal spread of the disease.
Keywords in Portuguese
TelessaúdeTelemedicina
Vigilância de doenças
COVID 19
Monitoramento Vigilância
Modelagem computacional
Transmissão
Doenças infecciosas
Sindrômico
Keywords
TelehealthTelemedicine
Disease surveillance
COVID-19
Monitoring
Surveillance
Computational modeling
Transmission
Infectious diseases
Syndromic
DeCS
TelemedicinaControle de Vetores de Doenças
COVID 19
Simulação por Computador
Doenças Transmissíveis
Share