Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/64060
Type
ArticleCopyright
Restricted access
Embargo date
2030-12-31
Sustainable Development Goals
03 Saúde e Bem-EstarCollections
- BA - IGM - Artigos de Periódicos [3814]
- INI - Artigos de Periódicos [3645]
Metadata
Show full item record
PREDICTION MODELS FOR ADVERSE DRUG REACTIONS DURING TUBERCULOSIS TREATMENT IN BRAZIL
Reações adversas a medicamentos
Modelo de previsão
Medicação concomitante
Author
Affilliation
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em Micobacterioses. Rio de Janeiro, RJ, Brasil.
Department of Biostatistics. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Division of Epidemiology. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA / Optum Epidemiology. Boston, Massachusetts, USA.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Faculdade de Tecnologia e Ciências. Curso de Medicina. Salvador, BA, Brasil.
Fundação Medicina Tropical Dr Heitor Vieira Dourado. Manaus, AM, Brasil / Universidade do Estado do Amazonas. Manaus, AM, Brasil.
Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Rio de Janeiro, RJ, Brasil.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA / Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Faculdade de Tecnologia e Ciências. Curso de Medicina. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil / Universidade Salvador. Curso de Medicina. Salvador, BA, Brasil / Escola Bahiana de Medicina e Saúde Pública. Curso de Medicina. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Department of Biostatistics. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Division of Epidemiology. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA / Optum Epidemiology. Boston, Massachusetts, USA.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Faculdade de Tecnologia e Ciências. Curso de Medicina. Salvador, BA, Brasil.
Fundação Medicina Tropical Dr Heitor Vieira Dourado. Manaus, AM, Brasil / Universidade do Estado do Amazonas. Manaus, AM, Brasil.
Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Rio de Janeiro, RJ, Brasil.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA / Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Faculdade de Tecnologia e Ciências. Curso de Medicina. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil / Universidade Salvador. Curso de Medicina. Salvador, BA, Brasil / Escola Bahiana de Medicina e Saúde Pública. Curso de Medicina. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.
Division of Infectious Diseases. Department of Medicine. Vanderbilt University Medical Center. Nashville, Tennessee, USA.
Abstract
Background: Tuberculosis (TB) treatment–related adverse drug reactions (TB-ADRs) can negatively affect adherence and treatment success rates. Methods: We developed prediction models for TB-ADRs, considering participants with drug-susceptible pulmonary TB who initiated standard TB therapy. TB-ADRs were determined by the physician attending the participant, assessing causality to TB drugs, the affected organ system, and grade. Potential baseline predictors of TB-ADR included concomitant medication (CM) use, human immunodeficiency virus (HIV) status, glycated hemoglobin (HbA1c), age, body mass index (BMI), sex, substance use, and TB drug metabolism variables (NAT2 acetylator profiles). The models were developed through bootstrapped backward selection. Cox regression was used to evaluate TB-ADR risk. Results: There were 156 TB-ADRs among 102 of the 945 (11%) participants included. Most TB-ADRs were hepatic (n = 82 [53%]), of moderate severity (grade 2; n = 121 [78%]), and occurred in NAT2 slow acetylators (n = 62 [61%]). The main prediction model included CM use, HbA1c, alcohol use, HIV seropositivity, BMI, and age, with robust performance (c-statistic = 0.79 [95% confidence interval {CI}, .74–.83) and fit (optimism-corrected slope and intercept of −0.09 and 0.94, respectively). An alternative model replacing BMI with NAT2 had similar performance. HIV seropositivity (hazard ratio [HR], 2.68 [95% CI, 1.75–4.09]) and CM use (HR, 5.26 [95% CI, 2.63–10.52]) increased TB-ADR risk. Conclusions: The models, with clinical variables and with NAT2, were highly predictive of TB-ADRs.
Keywords in Portuguese
Tratamento da tuberculoseReações adversas a medicamentos
Modelo de previsão
Medicação concomitante
Share