Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/65331
Type
ArticleCopyright
Open access
Collections
- IOC - Artigos de Periódicos [12969]
Metadata
Show full item record
WHOLE BLOOD RNA SIGNATURES IN LEPROSY PATIENTS IDENTIFY REVERSAL REACTIONS BEFORE CLINICAL ONSET: A PROSPECTIVE, MULTICENTER STUDY
Author
Tió-Coma, Maria
Hooij, Anouk van
Bobosha, Kidist
Schip, Jolien J. van der Ploeg-van
Banu, Sayera
Khadge, Saraswoti
Thapa, Pratibha
Kunwar, Chhatra B.
Goulart, Isabela M.
Bekele, Yonas
Hagge, Deanna A.
Moraes, Milton Ozório
Teles, Rosane Magda Brandão
Pinheiro, Roberta Olmo
Zwet, Erik W. van
Goeman, Jelle J.
Asefa, Abraham
Haks, Mariëlle C.
Ottenhof, Tom H. M.
Modlin, Robert L.
Geluk, Annemieke
Hooij, Anouk van
Bobosha, Kidist
Schip, Jolien J. van der Ploeg-van
Banu, Sayera
Khadge, Saraswoti
Thapa, Pratibha
Kunwar, Chhatra B.
Goulart, Isabela M.
Bekele, Yonas
Hagge, Deanna A.
Moraes, Milton Ozório
Teles, Rosane Magda Brandão
Pinheiro, Roberta Olmo
Zwet, Erik W. van
Goeman, Jelle J.
Asefa, Abraham
Haks, Mariëlle C.
Ottenhof, Tom H. M.
Modlin, Robert L.
Geluk, Annemieke
Affilliation
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands / Armauer Hansen Research Institute. Addis Ababa, Ethiopia.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
International Center for Diarrhoeal Disease Research Bangladesh. Dhaka, Bangladesh.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Federal University of Uberlandia. Faculty of Medicine. National Reference Center for Sanitary Dermatology and Leprosy. Uberlândia, MG, Brasil.
Armauer Hansen Research Institute. Addis Ababa, Ethiopia.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brasil.
University of California. David Gefen School of Medicine. Department of Medicine, Immunology and Molecular Genetics. Division of Dermatology. Los Angeles, CA, USA.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brasil.
Leiden University Medical Center. Department of Medical Statistics. Leiden, The Netherlands.
Leiden University Medical Center. Department of Medical Statistics. Leiden, The Netherlands.
Armauer Hansen Research Institute. Addis Ababa, Ethiopia.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
University of California. David Gefen School of Medicine. Department of Medicine, Immunology and Molecular Genetics. Division of Dermatology. Los Angeles, CA, USA / University of California. David Gefen School of Medicine. Department of Microbiology, Immunology and Molecular Genetics. Los Angeles, CA, USA.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands / Armauer Hansen Research Institute. Addis Ababa, Ethiopia.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
International Center for Diarrhoeal Disease Research Bangladesh. Dhaka, Bangladesh.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Federal University of Uberlandia. Faculty of Medicine. National Reference Center for Sanitary Dermatology and Leprosy. Uberlândia, MG, Brasil.
Armauer Hansen Research Institute. Addis Ababa, Ethiopia.
Anandaban Hospital. Mycobacterial Research Laboratories. Kathmandu, Nepal.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brasil.
University of California. David Gefen School of Medicine. Department of Medicine, Immunology and Molecular Genetics. Division of Dermatology. Los Angeles, CA, USA.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brasil.
Leiden University Medical Center. Department of Medical Statistics. Leiden, The Netherlands.
Leiden University Medical Center. Department of Medical Statistics. Leiden, The Netherlands.
Armauer Hansen Research Institute. Addis Ababa, Ethiopia.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
University of California. David Gefen School of Medicine. Department of Medicine, Immunology and Molecular Genetics. Division of Dermatology. Los Angeles, CA, USA / University of California. David Gefen School of Medicine. Department of Microbiology, Immunology and Molecular Genetics. Los Angeles, CA, USA.
Leiden University Medical Center. Department of Infectious Diseases. Leiden, The Netherlands.
Abstract
Early diagnosis of leprosy is challenging, particularly its inflammatory reactions, the major cause of irreversible neuropathy in leprosy. Current diagnostics cannot identify which patients are at risk of developing reactions. This study assessed blood RNA expression levels as potential biomarkers for leprosy. Prospective cohorts of newly diagnosed leprosy patients, including reactions, and healthy controls were recruited in Bangladesh, Brazil, Ethiopia and Nepal. RNA expression in 1,090 whole blood samples was determined for 103 target genes for innate and adaptive immune profiling by dual color Reverse-Transcription Multiplex Ligation-dependent Probe Amplification (dcRT-MLPA) followed by cluster analysis. We identified transcriptomic biomarkers associated with leprosy disease, different leprosy phenotypes as well as high exposure to Mycobacterium leprae which respectively allow improved diagnosis and classification of leprosy patients and detection of infection. Importantly, a transcriptomic signature of risk for reversal reactions consisting of five genes (CCL2, CD8A, IL2, IL15 and MARCO) was identified based on cross-sectional comparison of RNA expression. In addition, intra-individual longitudinal analyses of leprosy patients before, during and after treatment of reversal reactions, indicated that several IFN-induced genes increased significantly at onset of reaction whereas IL15 decreased. This multi-site study, situated in four leprosy endemic areas, demonstrates the potential of host transcriptomic biomarkers as correlates of risk for leprosy. Importantly, a prospective five-gene signature for reversal reactions could predict reversal reactions at least 2 weeks before onset. Thus, transcriptomic biomarkers provide promise for early detection of these acute inflammatory episodes and thereby help prevent permanent neuropathy and disability in leprosy patients.
Share