Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/68095
Type
ArticleCopyright
Open access
Sustainable Development Goals
03 Saúde e Bem-Estar09 Indústria, inovação e infraestrutura
13 Ação contra a mudança global do clima
17 Parcerias e meios de implementação
Collections
- IOC - Artigos de Periódicos [12967]
- MG - IRR - Artigos de Periódicos [4307]
Metadata
Show full item record
WOLBACHIA-BASED APPROACHES TO CONTROLLING MOSQUITO-BORNE VIRAL THREATS: INNOVATIONS, AI INTEGRATION, AND FUTURE DIRECTIONS IN THE CONTEXT OF CLIMATE CHANGE
Author
Branda, Francesco
Cella, Eleonora
Scarpa, Fabio
Slavov, Svetoslav Nanev
Bevivino, Annamaria
Moretti, Riccardo
Degafu, Abate Lemlem
Pecchia, Leandro
Rizzo, Alberto
Defilippo, Francesco
Moreno, Ana
Ceccarelli, Giancarlo
Alcantara, Luiz Carlos Júnior
Ferreira, Álvaro Gil Araújo
Ciccozzi, Massimo
Giovanetti, Marta
Cella, Eleonora
Scarpa, Fabio
Slavov, Svetoslav Nanev
Bevivino, Annamaria
Moretti, Riccardo
Degafu, Abate Lemlem
Pecchia, Leandro
Rizzo, Alberto
Defilippo, Francesco
Moreno, Ana
Ceccarelli, Giancarlo
Alcantara, Luiz Carlos Júnior
Ferreira, Álvaro Gil Araújo
Ciccozzi, Massimo
Giovanetti, Marta
Affilliation
University of Campus Bio-Medico di Roma. Unit of Medical Statistics and Molecular Epidemiology. Rome, Italy.
University of Central Florida. College of Medicine. Burnett School of Biomedical Sciences. Orlando, FL, USA.
University of Sassari. Department of Biomedical Sciences. Sassari, Italy.
Governo do Estado de São Paulo. Instituto Butantan. São Paulo, SP, Brasil.
Energy and Sustainable Economic Development. Italian National Agency for New Technologies. Department for Sustainability. Rome, Italy.
Energy and Sustainable Economic Development. Italian National Agency for New Technologies. Department for Sustainability. Rome, Italy.
Università Campus Bio-Medico di Roma. Department of Engineering. Sustainable Design Management and Assessment. Unit of Intelligent Health Technologies. Rome, Italy.
Università Campus Bio-Medico di Roma. Department of Engineering. Sustainable Design Management and Assessment. Unit of Intelligent Health Technologies. Rome, Italy.
Ospedale Luigi Sacco. Virology and Bioemergencies. Laboratory of Clinical Microbiology. Milan, Italy.
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini". Brescia, Italy.
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini". Brescia, Italy.
Azienda Ospedaliero Universitaria Policlinico Umberto I. Infectious Diseases Department. Rome, Italy.
Fundação Oswaldo Cruz. Instituto René Rachou. Grupo de Pesquisa Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Instituto René Rachou. Grupo de Pesquisa Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor. Belo Horizonte, MG, Brasil.
University of Campus Bio-Medico di Roma. Unit of Medical Statistics and Molecular Epidemiology. Rome, Italy.
Universita Campus Bio-Medico di Roma. Department of Sciences and Technologies for Sustainable Development and One Health. Rome, Italy / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Arbovírus e Vírus Hemorrágicos. Rio de Janeiro, RJ, Brasil.
University of Central Florida. College of Medicine. Burnett School of Biomedical Sciences. Orlando, FL, USA.
University of Sassari. Department of Biomedical Sciences. Sassari, Italy.
Governo do Estado de São Paulo. Instituto Butantan. São Paulo, SP, Brasil.
Energy and Sustainable Economic Development. Italian National Agency for New Technologies. Department for Sustainability. Rome, Italy.
Energy and Sustainable Economic Development. Italian National Agency for New Technologies. Department for Sustainability. Rome, Italy.
Università Campus Bio-Medico di Roma. Department of Engineering. Sustainable Design Management and Assessment. Unit of Intelligent Health Technologies. Rome, Italy.
Università Campus Bio-Medico di Roma. Department of Engineering. Sustainable Design Management and Assessment. Unit of Intelligent Health Technologies. Rome, Italy.
Ospedale Luigi Sacco. Virology and Bioemergencies. Laboratory of Clinical Microbiology. Milan, Italy.
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini". Brescia, Italy.
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini". Brescia, Italy.
Azienda Ospedaliero Universitaria Policlinico Umberto I. Infectious Diseases Department. Rome, Italy.
Fundação Oswaldo Cruz. Instituto René Rachou. Grupo de Pesquisa Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor. Belo Horizonte, MG, Brasil.
Fundação Oswaldo Cruz. Instituto René Rachou. Grupo de Pesquisa Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor. Belo Horizonte, MG, Brasil.
University of Campus Bio-Medico di Roma. Unit of Medical Statistics and Molecular Epidemiology. Rome, Italy.
Universita Campus Bio-Medico di Roma. Department of Sciences and Technologies for Sustainable Development and One Health. Rome, Italy / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Arbovírus e Vírus Hemorrágicos. Rio de Janeiro, RJ, Brasil.
Abstract
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases. Changes in temperature, humidity, and rainfall patterns can alter mosquito breeding habitats and extend the geographical range of disease vectors, increasing the urgency for effective control measures. This review highlights innovations in Wolbachia-based mosquito control and explores future directions in the context of climate change. It emphasizes the integration of Wolbachia with other biological approaches and the need for multidisciplinary efforts to address climate-amplified disease risks. As ecosystems shift, Wolbachia interventions could be crucial in reducing mosquito-borne diseases, especially in vulnerable regions. AI integration in Wolbachia research presents opportunities to enhance mosquito control strategies by modeling ecological data, predicting mosquito dynamics, and optimizing intervention outcomes. Key areas include refining release strategies, real-time monitoring, and scaling interventions. Future opportunities lie in advancing AI-driven approaches for integrating Wolbachia with other vector control measures, promoting adaptive, data-driven responses to climate-amplified disease transmission.
Share