Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/7353
CAN SCORE DATABANKS HELP TEACHING?
Avaliação Educacional/métodos
Estudantes de Medicina
Ensino/métodos
Escolas Médicas/normas
Escolas Médicas/tendências
Author
Affilliation
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil / Instituto Nacional de Ciência e Tecnologia. Instituto de Investigação em Imunologia. São Paulo, SP, Brasil
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil
Universidade Federal da Bahia. Faculdade de Medicina da Bahia. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil / Instituto Nacional de Ciência e Tecnologia. Instituto de Investigação em Imunologia. São Paulo, SP, Brasil
Abstract
Basic courses in most medical schools assess students' performance by conferring scores. The objective of this work is to use a large score databank for the early identification of students with low performance and to identify course trends based on the mean of students' grades. METHODOLOGY/PRINCIPAL FINDINGS: We studied scores from 2,398 medical students registered in courses over a period of 10 years. Students in the first semester were grouped into those whose ratings remained in the lower quartile in two or more courses (low-performance) and students who had up to one course in the lower quartile (high-performance). ROC curves were built, aimed at the identification of a cut-off average score in the first semesters that would be able to predict low performances in future semesters. Moreover, to follow the long-term pattern of each course, the mean of all scores conferred in a semester was compared to the overall course mean obtained by averaging 10 years of data. Individuals in the low-performance group had a higher risk of being in the lower quartile of at least one course in the second semester (relative risk 3.907; 95% CI: 3.378-4.519) and in the eighth semester (relative risk 2.873; 95% CI: 2.495-3.308). The prediction analysis revealed that an average score of 7.188 in the first semester could identify students that presented scores below the lower quartiles in both the second and eighth semesters (p<0.0001 for both AUC). When scores conferred by single courses were compared over time, three time-trend patterns emerged: low variation, upward trend and erratic pattern. CONCLUSION/SIGNIFICANCE: An early identification of students with low performance may be useful in promoting pedagogical strategies for these individuals. Evaluation of the time trend of scores conferred by courses may help departments monitoring changes in personnel and methodology that may affect a student's performance.
DeCS
Bases de Dados FactuaisAvaliação Educacional/métodos
Estudantes de Medicina
Ensino/métodos
Escolas Médicas/normas
Escolas Médicas/tendências
Share