Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/837
Type
ArticleCopyright
Open access
Collections
- ICICT - Artigos de Periódicos [1412]
- IOC - Artigos de Periódicos [12967]
Metadata
Show full item record
SPATIAL EVALUATION AND MODELING OF DENGUE SEROPREVALENCE AND VECTOR DENSITY IN RIO DE JANEIRO, BRAZIL
Author
Rocha, Nildimar Honorio
Nogueira, Rita Maria Ribeiro
Codeço, Cláudia Torres
Carvalho, Marilia Sá
Cruz, Oswaldo Gonçalves
Magalhães, Mônica de Avelar Figueiredo Mafra
Araújo, Josélio Maria Galvão de
Araújo, Eliane Saraiva Machado de
Gomes, Marcelo Quintela
Pinheiro, Luciane Silva
Pinel, Célio da Silva
Oliveira, Ricardo Lourenço de
Nogueira, Rita Maria Ribeiro
Codeço, Cláudia Torres
Carvalho, Marilia Sá
Cruz, Oswaldo Gonçalves
Magalhães, Mônica de Avelar Figueiredo Mafra
Araújo, Josélio Maria Galvão de
Araújo, Eliane Saraiva Machado de
Gomes, Marcelo Quintela
Pinheiro, Luciane Silva
Pinel, Célio da Silva
Oliveira, Ricardo Lourenço de
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Centro de Informação Científica e Tecnológica. Laboratório de Processamento de Imagens. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. União Ativista Defensora do Meio Ambiente. Núcleo de Apoio às Pesquisas em Vetores Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Centro de Informação Científica e Tecnológica. Laboratório de Processamento de Imagens. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. União Ativista Defensora do Meio Ambiente. Núcleo de Apoio às Pesquisas em Vetores Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.
Abstract
Background: Rio de Janeiro, Brazil, experienced a severe dengue fever epidemic in 2008. This was the worst epidemic ever,
characterized by a sharp increase in case-fatality rate, mainly among younger individuals. A combination of factors, such as
climate, mosquito abundance, buildup of the susceptible population, or viral evolution, could explain the severity of this
epidemic. The main objective of this study is to model the spatial patterns of dengue seroprevalence in three
neighborhoods with different socioeconomic profiles in Rio de Janeiro. As blood sampling coincided with the peak of
dengue transmission, we were also able to identify recent dengue infections and visually relate them to Aedes aegypti
spatial distribution abundance. We analyzed individual and spatial factors associated with seroprevalence using Generalized
Additive Model (GAM).
Methodology/Principal Findings: Three neighborhoods were investigated: a central urban neighborhood, and two isolated
areas characterized as a slum and a suburban area. Weekly mosquito collections started in September 2006 and continued
until March 2008. In each study area, 40 adult traps and 40 egg traps were installed in a random sample of premises, and
two infestation indexes calculated: mean adult density and mean egg density. Sera from individuals living in the three
neighborhoods were collected before the 2008 epidemic (July through November 2007) and during the epidemic (February
through April 2008). Sera were tested for DENV-reactive IgM, IgG, Nested RT-PCR, and Real Time RT-PCR. From the before–
after epidemics paired data, we described seroprevalence, recent dengue infections (asymptomatic or not), and
seroconversion. Recent dengue infection varied from 1.3% to 14.1% among study areas. The highest IgM seropositivity
occurred in the slum, where mosquito abundance was the lowest, but household conditions were the best for promoting
contact between hosts and vectors. By fitting spatial GAM we found dengue seroprevalence hotspots located at the
entrances of the two isolated communities, which are commercial activity areas with high human movement. No
association between recent dengue infection and household’s high mosquito abundance was observed in this sample.
Conclusions/Significance: This study contributes to better understanding the dynamics of dengue in Rio de Janeiro by
assessing the relationship between dengue seroprevalence, recent dengue infection, and vector density. In conclusion, the
variation in spatial seroprevalence patterns inside the neighborhoods, with significantly higher risk patches close to the
areas with large human movement, suggests that humans may be responsible for virus inflow to small neighborhoods in
Rio de Janeiro. Surveillance guidelines should be further discussed, considering these findings, particularly the spatial
patterns for both human and mosquito populations.
Share