Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/31208
Type
ArticleCopyright
Open access
Sustainable Development Goals
14 Vida na águaCollections
- IOC - Artigos de Periódicos [12973]
Metadata
Show full item record
THE RESISTOME OF LOW-IMPACTED MARINE ENVIRONMENTS IS COMPOSED BY DISTANT METALLO-β-LACTAMASES HOMOLOGS
metallo-b-lactamases
marine environment
VIM
SPM-1
distant homolog
antibiotic resistance gene
pristine environment
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microrganismos. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microrganismos. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microrganismos. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microrganismos. Rio de Janeiro, RJ. Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microrganismos. Rio de Janeiro, RJ. Brasil.
Abstract
The worldwide dispersion and sudden emergence of new antibiotic resistance genes (ARGs) determined the need in uncovering which environment participate most as their source and reservoir. ARGs closely related to those currently found in human pathogens occur in the resistome of anthropogenic impacted environments. However, the role of pristine environment as the origin and source of ARGs remains underexplored and controversy, particularly, the marine environments represented by the oceans. Here, due to the ocean nature, we hypothesized that the resistome of this pristine/low-impacted marine environment is represented by distant ARG homologs. To test this hypothesis we performed an in silico analysis on the Global Ocean Sampling (GOS) metagenomic project dataset focusing on the metallo-β-lactamases (MβLs) as the ARG model. MβLs have been a challenge to public health, since they hydrolyze the carbapenems, one of the last therapeutic choice in clinics. Using Hidden Markov Model (HMM) profiles, we were successful in identifying a high diversity of distant MβL homologs, related to the B1, B2, and B3 subclasses. The majority of them were distributed across the Atlantic, Indian, and Pacific Oceans being related to the chromosomally encoded MβL GOB present in Elizabethkingia genus. It was observed only a reduced number of metagenomic sequence homologs related to the acquired MβL enzymes (VIM, SPM-1, and AIM-1) that currently have impact in clinics. Therefore, low antibiotic impacted marine environment, as the ocean, are unlikely the source of ARGs that have been causing enormous threat to the public health.
Keywords
resistomemetallo-b-lactamases
marine environment
VIM
SPM-1
distant homolog
antibiotic resistance gene
pristine environment
Share