Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/47723
EXVE: THE KNOWLEDGE BASE OF ORTHOLOGOUS PROTEINS IDENTIFIED IN FUNGAL EXTRACELLULAR VESICLES
Author
Affilliation
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.
Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo Góes. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.
Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo Góes. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.
Abstract
Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.
Share