Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/50949
Type
ArticleCopyright
Open access
Collections
- IOC - Artigos de Periódicos [12973]
Metadata
Show full item record
REDUCTIVE POWER GENERATED BY MYCOBACTERIUM LEPRAE THROUGH CHOLESTEROL OXIDATION CONTRIBUTES TO LIPID AND ATP SYNTHESIS
Author
Rosa, Thabatta L. S. A.
Marques, Maria Angela M.
DeBoard, Zachary
Hutchins, Kelly
Silva, Carlos Adriano A.
Montague, Christine R.
Yuan, Tianao
Amaral, Julio J.
Atella, Georgia C.
Rosa, Patrícia S.
Mattos, Katherine A.
VanderVen, Brian C.
Lahiri, Ramanuj
Sampson, Nicole S.
Brennan, Patrick J.
Belisle, John T.
Pessolani, Maria Cristina V.
Berrêdo-Pinho, Marcia
Marques, Maria Angela M.
DeBoard, Zachary
Hutchins, Kelly
Silva, Carlos Adriano A.
Montague, Christine R.
Yuan, Tianao
Amaral, Julio J.
Atella, Georgia C.
Rosa, Patrícia S.
Mattos, Katherine A.
VanderVen, Brian C.
Lahiri, Ramanuj
Sampson, Nicole S.
Brennan, Patrick J.
Belisle, John T.
Pessolani, Maria Cristina V.
Berrêdo-Pinho, Marcia
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Department of Microbiology and Immunology, Cornell University. Ithaca, NY, USA.
Department of Chemistry, Stony Brook University. Stony Brook, NY, USA.
Instituto Nacional de Metrologia, Qualidade e Tecnologia. Diretoria de Metrologia Aplicada às Ciências da Vida. Laboratório de Química Biológica. Rio de Janeiro, RJ, Brasil.
Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica. Laboratório de Bioquímica de Lipídeos e Lipoproteínas. Rio de Janeiro, RJ, Brasil.
Instituto Lauro de Souza Lima. Divisão de Ensino e Pesquisa. Bauru, SP, Brasil.
Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Departamento de Controle de Qualidade. Rio de Janeiro, RJ, Brasil.
Department of Microbiology and Immunology, Cornell University. Ithaca, NY, USA.
Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau. National Hansen’s Disease Programs, Baton Rouge, LA, USA.
Department of Chemistry, Stony Brook University. Stony Brook, NY, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Department of Microbiology and Immunology, Cornell University. Ithaca, NY, USA.
Department of Chemistry, Stony Brook University. Stony Brook, NY, USA.
Instituto Nacional de Metrologia, Qualidade e Tecnologia. Diretoria de Metrologia Aplicada às Ciências da Vida. Laboratório de Química Biológica. Rio de Janeiro, RJ, Brasil.
Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica. Laboratório de Bioquímica de Lipídeos e Lipoproteínas. Rio de Janeiro, RJ, Brasil.
Instituto Lauro de Souza Lima. Divisão de Ensino e Pesquisa. Bauru, SP, Brasil.
Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Departamento de Controle de Qualidade. Rio de Janeiro, RJ, Brasil.
Department of Microbiology and Immunology, Cornell University. Ithaca, NY, USA.
Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau. National Hansen’s Disease Programs, Baton Rouge, LA, USA.
Department of Chemistry, Stony Brook University. Stony Brook, NY, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Department of Microbiology, Immunology and Pathology, Colorado State University. Fort Collins, CO, USA.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.
Abstract
Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces
accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs
are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process
decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by
which host-derived lipids are delivered to intracellular M. leprae. We previously
demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to
cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we
investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis
in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by
infected SCs. Moreover, fluorescence microscopy analysis revealed a close association
between M. leprae and the internalized LDL-cholesterol within the host cell. By using
Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we
demonstrated that ml1942 coding for 3b-hydroxysteroid dehydrogenase (3b-HSD), but
not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the
cholesterol oxidation activity detected in M. leprae. The 3b-HSD activity generates the
electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain
and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids
phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae
3b-HSD activity with the 17b-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-
3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery
to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol
oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3b-
HSD as a prime drug target that may be used in combination with current multidrug
regimens to shorten leprosy treatment and ameliorate nerve damage.
Share