Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/67597
MIR-203 SECRETED IN EXTRACELLULAR VESICLES MEDIATES THE COMMUNICATION BETWEEN NEURAL CREST AND PLACODE CELLS REQUIRED FOR TRIGEMINAL GANGLIA FORMATION
microRNA
CRISPR/Cas9
Intercellular communication
Extracellular vesicles
MicroRNAs
Comunicação Celular
Proteína 9 Associada à CRISPR
Gânglio Trigeminal
Author
Affilliation
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
California Institute of Technology. Division of Biology. Pasadena, California, USA.
California Institute of Technology. Division of Biology. Pasadena, California, USA.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Biologia Molecular e Sistemática de Tripanossomatídeos. Curitiba, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Núcleo de Plataformas Tecnológicas. Recife, PE, Brasil.
Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Departamento de Microbiologia. Recife, PE, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Biologia Molecular e Sistemática de Tripanossomatídeos. Curitiba, PR, Brasil.
California Institute of Technology. Division of Biology. Pasadena, California, USA.
Escuela de Bio y Nanotecnologías. Chascomús, Argentina / Instituto Tecnológico Chascomús. Laboratorio de Parásitos Anaerobios. Chascomús, Argentina.
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
California Institute of Technology. Division of Biology. Pasadena, California, USA.
California Institute of Technology. Division of Biology. Pasadena, California, USA.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Biologia Molecular e Sistemática de Tripanossomatídeos. Curitiba, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Núcleo de Plataformas Tecnológicas. Recife, PE, Brasil.
Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Departamento de Microbiologia. Recife, PE, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Biologia Molecular e Sistemática de Tripanossomatídeos. Curitiba, PR, Brasil.
California Institute of Technology. Division of Biology. Pasadena, California, USA.
Escuela de Bio y Nanotecnologías. Chascomús, Argentina / Instituto Tecnológico Chascomús. Laboratorio de Parásitos Anaerobios. Chascomús, Argentina.
Instituto Tecnológico de Chascomús. Laboratory of Developmental Biology. Chascomús, Argentina / Escuela de Bio y Nanotecnologías. Chascomús, Argentina.
Abstract
While interactions between neural crest and placode cells are: critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, by using chick embryos, we show that the microRNA (miR)-203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. By employing cell-specific electroporations for either miR-203 sponging or genomic editing using CRISPR/Cas9, we elucidated that neural crest cells serve as the source, while placode cells serve as the site of action for miR-203 in trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses an miR responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.
Keywords
Trigeminal ganglionmicroRNA
CRISPR/Cas9
Intercellular communication
Extracellular vesicles
DeCS
Vesículas extracelularesMicroRNAs
Comunicação Celular
Proteína 9 Associada à CRISPR
Gânglio Trigeminal
Share